收藏本站  |  联系我们  |  高能所主站  |  中国科学院  |  English
 
 首 页  理论室概况 科研队伍 学术活动 人才培养 科研成果 访问须知 人才需求 下载专区 TPCSF CFHEP
 
  当前位置:首页>学术活动>学术报告  
学术活动  
学术报告
学术会议
理论室青年论坛
学术报告
[4.19]DM physics in the NMSSM with the inverse seesaw mechanism and its implication at the LHC
文章来源:  |  发布时间:2018-04-04  |  浏览:

                                        Seminar

Title: DM physics in the NMSSM with the inverse seesaw mechanism and its implication at the LHC

Speaker: Prof. Junjie Cao (曹俊杰) (河南师范大学)

Time: 2:30PM, Apr. 19th, 2018 (Thursday)

Place: Theoretical Physics Division, 319

Abstract: In supersymmetric theories like the Next-to-Minimal Supersymmetric Standard Model (NMSSM), the lightest neutralino with bino or singlino as its dominant component is customarily taken as dark matter (DM) candidate. Since light Higgsinos favored by naturalness can strength the couplings of the DM and thus enhance the DM-nucleon scattering rate, the tension between naturalness and DM direct detection results becomes more and more acute with the improved experimental sensitivity. In my talk, I extend the NMSSM by inverse seesaw mechanism to generate neutrino mass, and show that in certain parameter space the lightest sneutrino may act as a viable DM candidate, i.e. it can annihilate by multi-channels to get correct relic density and meanwhile satisfy all experimental constraints. The most striking feature of the extension is that the DM-nucleon scattering rate can be naturally below its current experimental bounds regardless of the higgsino mass, and hence it alleviates the tension between naturalness and DM experiments. Other interesting features include that the Higgs phenomenology becomes much richer than that of the original NMSSM due to the relaxed constraints from DM physics and also due to the presence of extra neutrinos, and that the signatures of sparticles at colliders are quite different from those with neutralino as DM candidate.

附件
版权所有 © 中国科学院高能物理研究所理论物理研究室 京ICP备05002790号
地址:北京市石景山区玉泉路19号乙院918-4 邮编:100049