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Prelude

• Scattering amplitudes are basic observables.

• They are important for LHC.

• The tree level amplitudes are the same for all gauge theories.

• They have hidden structures and simplicity.

• They are complicated to be evaluated with traditional methods, but the
answer can be surprisingly simple.

• They are related to other areas of physics and mathematics, like
integrability, graph theory, combinatorics, twistors, Wilson loops etc.

• Several methods have been developed the last years like recursions
relations, unitarity methods, etc.
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Introduction

• Perhaps one can say that in 2003 Witten revolutionized the study of
scattering amplitudes by connecting string theory, twistor space and
N = 4 super Yang-Mills into a twistor string theory.

• In Witten’s theory tree-level field theory amplitudes are given as integrals
that localize on generic spheres.

• Most of the developments in the past decade have been focused on
particular theories such as N = 4 super Yang-Mills and N = 8
supergravity.

• The natural question is: what is the space of all field theories whose
S-matrix can be expressed as an integral over the moduli space of
punctured sphere.

• There seems to be that the key ingredient for massless particles is the
so-called scattering equations.
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Outline

We will

I define the scattering equations

I discuss the properties of the scattering equations

I evaluate explicit n-point amplitudes for special kimematics

I evaluate some amplitudes for general kinematics
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Scattering equations

The scattering equations define a map from the space of kinematic
invariants ka · kb to the moduli space of punctured spheres. The explicit
form is ∑

b 6=a
ka·kb
σa−σb = 0,

where kc is the momentum and σc the position of the cth puncture.

The scattering equations have appeared before

• in Fairlie and Roberts (1972) in the early days of dual models when they
were seeking a variation of the Veneziano model that was free of tachyons

• in Gross and Mende (1988) at the high energy behavior of string theory

• in different contexts in works of Witten, Cachazo, etc.

C.K. — Scattering equations 5/22



Properties of the scattering equations

Some comments on the scattering equations

fa ≡
∑

b 6=a
ka·kb
σa−σb = 0.

• They are n of them.
• They are invariant under σa → aσa+b

cσa+d
, ad− bc = 1.

• Only n− 3 of the σ’s are independent. We can fix three of them to
arbitrary values, for example σ1 = 1, σ2 = −1, σ3 =∞. They satisfy∑

a fa =
∑

a σafa =
∑

a σ
2
afa = 0.

• They have (n− 3)! solutions.
• σ’s can be complex.
• They admit a polynomial for in n− 3 variables.
• They are deceivingly simple. Apart from special kinematics, no solutions
are known beyong n = 5.
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Use of the scattering equations

The modern use of the scattering equations (Cachazo-He-Yuan) is to allow
us to express the tree level in arbitrary spacetime dimensions of a vast
number of massless theories in a nice way. The general form of all these
amplitudes is

Amplitude =
∫
dnσ In(ε, p, σ)

∏
a δ(fa),

where ε is the helicity and p the momentum of the external particles. In
depends on the theory under consideration and it contains information
about the kinematics and helicities.

The delta function completely localizes the integral and we can write

Amplitude =
∑

solutions In/
∣∣∣∂fa∂σb

∣∣∣ .
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Examples

We give some examples. For Yang-Mills we have

IYang−Mills =
PfΨ

σ12σ23 · · ·σn1
,

where σij = σi − σj and Ψ is a 2n× 2n antisymmetric matrix given by

Ψ =

(
A −CT

C B

)
,

and

Aab =
ka · kb
σa − σb

, Bab =
εa · εb
σa − σb

, Cab =
εa · kb
σa − σb

.
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Scattering equations

Some more examples

Iφ3 =
1

σ12σ23 · · ·σn1
,

IYang−Mills =
PfΨ

σ12σ23 · · ·σn1
,

Igravity = detΨ.

We can see that

gravity × scalar = (Yang Mills)2.

• More theories are known, like Einstein-YM, YM-scalar, DBI, NLSM, etc.
• All the above theories are massless and do not contain fermions.
• For Yang-Mills the formula was proven by Dolan-Goddard, by showing
that the equations satisfy known recursion relations.
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An identity for the roots of polynomials

Since the general problem is hard to solve we will study amplitudes at
special kinematics.

Consider a polynomial y with n roots denoted by xj

y = k

n∏
j=1

(x− xj)

that satisfies the second order differential equation

ay′′ + by′ + cy = 0.

We take the logarithm and then the derivative of the polynomial to get

y′

y
=

n∑
j=1

1

x− xj
.
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An identity for the roots of polynomials

We isolate the ith root

y′

y
=

n∑
j 6=i

1

x− xj
+

1

x− xi
,

or equivalently
n∑
j 6=i

1

x− xj
=

(x− xi)y′ − y
(x− xi)y

.

We take the limit where x approaches xi

n∑
j 6=i

1

xi − xj
=

y′′

2y′
= − b

2a
,

where we have used the second order differential equation that the
polynomial satisfies.
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Determination of the special kinematics

We compare the scattering equations with the equation that the roots of
polynomials satisfy

∑
b 6=a

ka · kb
σa − σb

= 0 vs

n∑
j 6=i

1

xi − xj
= − b

2a

and we claim they are the same if one chooses some special kinematics
and polynomials. We choose

• Jacobi polynomials P
(α,β)
n (x) and

• k1 · ka = (1 + β)/2, k2 · ka = (1 + α)/2, ka · kb = 1, a, b ≥ 4.
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Evaluation of the amplitude

For the above special kinematics we can evaluate the amplitudes for
various theories. For example for Yang-Mills we find that

An =
P

(α−1
2 ,

β−1
2 )

n
2 −1

(1)

P
(α2 ,

β
2 )

n
2 −2

(−1)
×helicities.

• The above amplitude can be rewritten in many different forms including
Gamma functions and factorials.
• The Jacobi polynomials satisfy recurrence relations that look like
Pn = Pn−1 + Pn−2, that hint to recurrence relations for the scattering
amplitudes.
• One can use different polynomials to study different kinematics.
• For gravity the result also exists.
• One idea is to associate the amplitude to an integrable system. Our
construction has elements of integrability.
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Proof of the relations for the special kinematics

One can evaluate any scattering amplitude for our special kinematics using
the following arguments.
• For our special kinematics the scattering equations can be written as
n− 3 equations that all look like

a1s1 + a2s2 + a3s3 + . . . = b,

where si are the symmetric polynomials and ai and b constants. For
example

s1 = σ1 + σ2 + σ3 + . . . ,

s2 = σ1σ2 + σ1σ3 + σ2σ3 + . . . ,

s3 = σ1σ2σ3 + . . . ,

...

The system is linear and we can easily solve for si.
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Proof of the relations for the special kinematics

• Due to symmetry if
(. . . , σi, . . . , σj , . . .)

is a solution of the scattering equations, so does

(. . . , σj , . . . , σi, . . .).

• This means that if we know one of the solutions of the scattering
equation, for example

(σ1, σ2, σ3, . . .)

then we can get all of them by simply permuting the above solution.
• Then any amplitude can be evaluated explicitly as

Amplitude =
∑

solutions

f(σ1, σ2, σ3, . . .)

=
∑

σi perms

f(σ1, σ2, σ3, . . .)

= F (s1, s2, s3, . . .).
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General kinematics - a toy model

For general kinematics we cannot solve the scattering equations, but
fortunately one does not need to do so in order to evaluate a scattering
amplitude. In order to see why this is the case, let us consider the toy
scattering equation

x2 − ax+ b = 0.

We know that the sum of roots of the above polynomial scattering
equation is a, whereas the product of roots is b, because

(x− r1)(x− r2) = x2 − (r1 + r2)x+ r1r2 = 0.

Then we can just evaluate any toy model scattering amplitude as a
function of a and b without the need of knowing the explicit solutions of
the toy scattering equation. We illustrate this idea with a few simple
examples.
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General kinematics - a toy model

We consider a few toy amplitudes that satisfy the toy model scattering
equation

x2 − ax+ b = 0.

• First example

A =
∑
roots

x2 = r21 + r22 = (r1 + r2)
2 − 2r1r2 = a2 − 2b.

• Second example

A =
∑
roots

1

x2
=

1

r21
+

1

r22
=
r21 + r22
r21r

2
2

=
a2 − 2b

b2
.

This holds in general

A =
∑
roots

f(x) = F (a, b).
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All five point tree amplitudes

Using the above ideas we would like to evaluate the first non-trivial case,
namely all the five point amplitudes at tree level. The claim is that they
are linear combinations of the following fundamental quantity

P =
∑

roots
cross ratios of sigmas

Jacobian of scattering equations .

The reason this claim is true is that P is the most general quantity allowed
by symmetries. For five points we have five cross ratios. More explicitly we
have

P =
∑
roots

1

Jacobian

5∏
i=1

(
σi,i+1σi+2,i+3

σi,i+2σi+1,i+3

)αi
and

A =
∑

coefficient P,

where the sums runs over multiplicities of the cross ratios.
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All five point tree amplitudes

The goal is to give an explicit expression of the fundamental quantity P .
The answer is in general complicated but it seems there is a way to put an
order. We have found that one can express P through the introduction of
a generating function G

P =
(∏5

i=1
1
αi!

∂αi

∂x
αi
i

)
G(xi)

∣∣∣
xi=0

,

where

G(xi) =

∑5
i<j<k<l<m(d0 + dixi + dijxixj + . . .+ dijklmxixjxkxlxm)∏5

i=1(1 + bixi + cix2i )
.

The coefficients appearing above are simple functions of the momentum,
for example b0 =

∑5
i=1

1
(ki·ki+1)(ki+2·ki+3)

.
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General comments

• One can apply the same ideas and techniques to the n-point case. The
form of the generating function in the general case is easy to find. The
difficult part of the calculation is the express the coefficients of the
generating function in terms of kinematic invariants.

• In the meanwhile at least two more independent methods have been
devoloped that touch on the same problem. They use graph theory, the
global residue theorem and other ideas.
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Summary

I We have used the scattering equations to explicitly evaluate gluon
and graviton n-point amplitudes for special kinematics. The answer is
given in terms of Jacobi polynomials.

I We have explained how to evaluate amplitudes for the special
kinematics for other theories.

I We have presented an algorithm that evaluates all amplitudes for
general kinematics from the coefficients of the scattering equations.

I We have explicitly evaluated all n-point amplitudes for general
kinematics through the introduction of a generating function.
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To be understood

I Which theories admit an S-matrix representation in terms of
scattering equations?

I How can we explicitly evaluate all amplitudes?

I Is there a simple formula for them?

I What happens at loop level?

I What happens to theories with fermions?

I . . .
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