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Some references

I Methods of information geometry - Shun’ichi Amari and Hiroshi
Nagaoka

I Information geometry for neural networks - Daniel Wagenaar
I Information geometry blog entries - John Baez
I Statistical Inference, Occam’s Razor, and Statistical Mechanics on

the Space of Probability Distributions - Vijay Balasubramanian
I Relative Entropy and Proximity of Quantum Field Theories -

Balasubramanian et al.
I Statistical Inference and String Theory - Jonathan Heckman
I Multi-Instanton Calculus and the AdS/CFT Correspondence in

N=4 Superconformal Field Theory - Dorey et al.
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Motivation

I AdS/CFT: We would like to be able to derive the dual
gravitational description of a given strongly coupled field theory.

I There are hints that information theory might point us in the
right direction

I There are also hints that instantons know something about the
dual geometry to a given QFT.

I Can we combine these to make a generative AdS/CFT algorithm?
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Information theory and holography
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Caveats

I The following is very much speculative and we have some way to
go, but together with colleagues in Cape Town, I believe that this
is a direction worth investigating. At the very least it is the
confluence of a number of very interesting subjects!
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A digression

I To build up to information geometry let’s remind ourselves a little
about entropic ideas.

I The first few slides will be familiar to anyone at my talk last year,
but it quickly diverges...

7 / 39



Shannon Entropy

I The information we learn from an event:
I Ii = − logPi

I We learn more from an unlikely event than from a likely one.
I The entropy in a system is the probabilistically weighted sum of

all possible information:

SShannon = −
∑

i
Pi logPi (1)

eg. calculate the entropy inherent in a language in terms of the average
amount of information you’ll get when looking at random letters in a
book.
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The entropy of English

SEnglish ∼ 4.1bits/symbol
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The entropy of a thermodynamic system

I Given partial knowledge (ie. the macroscopic thermodynamic
variables), we can say how much information we would get from
learning about the precise microstate and can measure the
thermodynamic entropy positing that the microstates are ergodic
(a reasonable assumption under the guise of statistical mechanics).

I Entropy is related to the energy in a system which cannot be used
to do work (This can be taken in both a thermodynamic sense and
a purely information theoretic sense).
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Mutual Information

11 / 39



Mutual Information

I When two systems are correlated, how much can we learn from
one system by making a measurement in the other?

I Joint Entropy:

S(X ,Y ) = −
∑
i,j

P(xi , yj) logP(xi , yj) (2)

I Conditional Entropy:

S(Y |X) = −
∑
i,j

P(xi , yj) logP(yj |xi) (3)

I Mutual Information:

H (X ; Y ) = S(Y )− S(Y |X) (4)

This is roughly how much information is shared
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A measure of distance in statistical ensembles

I How about the difference between the joint entropy and the
mutual information.

D(X ,Y ) = S(X ,Y )−H (X ; Y ) = S(X |Y ) + S(Y |X)
= −

∑
x∈X ,y∈Y

P(x, y) log(P(x|y)P(y|x)) (5)

Defines a distance between the two sources (satisfies all metric
requirements).
Distance between two distributions over the same source:

I The Kullback-Leibler pseudo distance (or relative entropy)

D[p(x)||q(x)] =
〈
log p(x)

q(x)

〉
p

(6)

I The information lost when q is used to approximate p.
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The Fisher Metric

I How about measuring an infinitesimal distance using the KL
distance?

DKL(P(x; ζ)||P(x; ζ + ∆ζ) ∼ 1
2
∑

i

∑
j

gij(ζ)∆ζ i∆ζ j (7)

where:
gij =

∑
x

P(x; ζ) ∂

∂ζ i logP(x, ζ) ∂

∂ζ j logP(x, ζ) (8)

or the continuous version:

gij =
∫

dxP(x; ζ) ∂

∂ζ i logP(x, ζ) ∂

∂ζ j logP(x, ζ) (9)

This of course can be written as the second derivative of the
expectation value 〈∂i logP∂j logP〉.

I This is the Fisher Metric.
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A simple example

How about looking at the Fisher metric for the Gaussian distribution?
Can we guess what it might look like from the beginning?

P(x;µ, σ) = 1
σ
√
2π

e−
(x−µ)2

2σ2 (10)

The Fisher Metric tells us about how difficult it is to tell apart two
distributions. Clearly the absolute value of µ won’t make a difference,
but the absolute value of σ will. For a given µ two distributions which
have large σ will be harder to tell apart than two which have small σ.
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A simple example

Let’s look at one entry in the metric explicitly:

gµµ =
∫ ∞
−∞

1
σ
√
2π

e−
(x−µ)2

2σ2

(
∂µ

(
−(x − µ)2

2σ2

))2

=
〈

(x − µ)2

σ2

〉
= 1
σ2 (11)

Cross-terms vanish, and gσσ is very similar:

ds2
Gaussian = dσ2/2 + dµ2

σ2 (12)

The space is hyperbolic: Gaussians in some way are related to
Euclidean AdS...not such a big deal...
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Reversing the procedure

I Can we start with a metric and figure out what the corresponding
probability distribution is?

I It turns out that most of the information about the distribution is
lost when we calculate the expectation value.

I There is an infinite degeneracy when going in the other direction.
I In fact one can write a multi-dimensional PDF:

P(X ; θ) = f (x j − hj) (13)

and then:
gab = ∂ahj∂bhkδjk (14)

I The fisher metric can be written as a pullback
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The PDF of a spherical metric

More accurately A PDF of a spherical metric:

P(x, y, z; θ, φ) = 1
(2π)−

3
2

e−
1
2 ((x−cos θ sinφ)2+(y−sin θ sinφ)2+(z−cosφ)2) (15)

I Take a quantum harmonic oscillator
I

ψn(x) = 1√
2nn!
√
π

Hn(x)e−x2/2

where Hn(x) are the Hermite polynomials.
I The general sum of the first n eigenfunctions gives the metric on

Sn .
Constructing Probability Density Functions for Arbitrary Metric
Tensors via the Fisher Information Metric - T Clingman, J Murugan,
JS - arXiv:1504.03184.
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So this is information geometry

I Defining a natural geometry on the spaces of probability
distributions.

I So?
I This allows for better machine learning algorithms which can take

geodesics in the paths of parameter space as defined on the
information manifold.

I Information and geometry are somehow intimately linked in the
AdS/CFT correspondence - could this be a clue?

19 / 39



What has this to do with AdS/CFT

I The Geometry and Topology of moduli spaces - Hitchin
I Studied instantons of SU (2) YM on R4.
I Self-dual, finite energy, euclidean solutions, corresponding in the

Lorentzian picture to tunnelling solutions between vacua.
I Look at single instanton solutions (labeled by a topological charge

which corresponds to the winding of the global part of the gauge
symmetry as r →∞)

FA = λ2dx ∧ dx̄
(λ2 + |x − a|2)2 (16)

where x is a quaternion valued variable: x = x0 + ix1 + jx2 + kx3.
I This is a 5-parameter solution.
I classically this theory is conformal (of course that is broken

QMically).
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The moduli space of SU(2)

I The moduli space is given by:

M =
{

(λ2, a) ∈ R5|λ2 > 0
}

(17)

I generally one defines an L2 metric on this space.
I The metric is conformally flat - not conformally invariant.
I The L2 metric is not complete - there are certain singularities in

the metric related to concentrated instantons
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An alternative metric?

I Can we define a metric which has the same symmetries as the
underlying gauge theory and is everywhere smooth?

I We can define a family of probability distributions:

ρ(X , θ) ∼ F2
A(X , θ) ∼ L (18)

With appropriate normalisation. This is essentially the instanton
density. (θ = {λ2, a})

I Now we can define a metric:

gAB ∼
∫ √gd4xF2

A(X , θ)∂A logF2
A(X , θ)∂B logF2

A(X , θ) (19)

22 / 39



so what is it for SU(2)?

I It turns out that for SU (2) instantons on R4, the metric defined
from the information theoretic point of view is Euclidean AdS5.
This can be shown very simply from symmetry arguments, or from
a relatively simple explicit calculation.

I Symmetry is powerful and so perhaps this isn’t greatly surprising.
I Is there anything more subtle going on? hep − th/0108122 - Blau,

Narain, Thompson...
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Some more powerful statements

I Blau et al:
I Perturb the space-time on which the instantons are defined:

δhtr(FA ∧ FA) (20)

where δhgµν = hµν is the variation of the boundary metric. This
variation gives rise to a variation of the bulk metric.

I That leads precisely to the equation for the AdS5 boundary to
bulk graviton propagator.

I This means that hidden in the instanton moduli space in R4 for
SU (2) instantons is dynamical gravity in AdS5.

I In essence, one can show that the variation of the boundary metric
and the instantons thereon leads to the Einstein Equations for the
bulk:

I RAB = −4GAB.
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Some more powerful statements

I Moreover, for the perturbed metric, the perturbed instanton
density is the boundary to bulk massless scalar propagator:

�F2 = 0 (21)
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And at finite temperature?

I We can look at caloron solutions (instantons at finite
temperature): http://arxiv.org/pdf/hep-th/0507082.pdf Soo-Jong
Rey and Yasuaki Hikida.

I Only numerical solutions exist for the Fisher metric.
I There is a horizon, but there are some rather strange numerical

artefacts which are still not cleared up.
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So is this AdS/CFT?

I Not yet, by any means. This was for SU(2) Yang Mills and it
shows that somehow Einstein gravity on AdS5 is a natural measure
on the moduli space of instantons. There also seems to be a
correlation function ↔ bulk propagator correspondence going on.

I This is all at the linearised level - going beyond linear is tricky.
I It’s not clear how the higher form fields would come about
I How about the compact part of the space?
I What happens with supersymmetry
I Are there any hints of something special happening at large N?
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Well, maybe SU(2) is relevant...

The large N saddle point approximation of SU (N ) Yang Mills has a
moduli space which is that of SU (2).
Integrating out the gauge degrees of freedom leaves us with SU (2).
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Instantons in holography

I hep − th/9901128 - Multi-Instanton Calculus and the AdS/CFT
Correspondence in N=4 Superconformal Field Theory - Dorey et al

I Instanton contributions to fermionic correlators in large N SYM
can be mapped to D(−1) instantons in AdS5 × S5. The instantons
see the space.

I How about multi-instantons? The space collapses to a single copy
of AdS5 × S5.

I This is found by going to next order in N and seeing that the
degeneracy in (AdS5 × S5)k is lifted to a single copy of the space.

I Each multi-instanton contribution sees the same space
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Let’s start somewhere simpler

I Can we understand where the internal space comes from?
I In fact Dorey et al already see the compact space but we want to

show why the geometry is dynamical.
I Start with a simpler model: CPN .

S =
∫

d2xDµφ
† ·Dµφ (22)

where
Dµφ = ∂µφ−Aµφ , (23)

is the U (1) gauge covariant derivative and the (auxiliary) gauge
field is given by

Aµ = φ† · ∂µφ . (24)
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instanton solutions

Introducing complex coordinates

x± = x1 ± ix2 (25)

(anti-)instanton solutions satisfy

D∓φ = 0 . (26)

Thus we can express any instanton solutions in terms of a rational
holomorphic function f (x+)

φ(x) = f (x+)
|f (x+)| (27)

Anti-instantons are obtained by using rational anti-holomorphic
functions. The instanton charge is given by the degree of the zero of
f (x+).
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zero modes of the instanton

The most general k = 1 instanton is thus given by

φ = eiθ (x+ − a)u + λv√
|x+ − a|2 + λ2 , (28)

where a labels the position of the instanton, λ its size and u, v satisfy

u† · u = v† · v = 1 , u† · v = 0 , (29)

and give the orientations of the instanton in the (N + 1)-dimensional
complex vector space. This instanton solution has 2N + 1 moduli
corresponding to the two positions a, the size λ, and the 2N − 2
possible orientations of v relative to u. We will now set θ = 0 and
u = (1, 0, . . . , 0) without loss of generality.
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the moduli space

I If we use the Lagrangian density, as the probability density, then
we cannot get any information about the internal global
symmetries. The space will simply be AdS3. Can we define a
vector valued probability density?

I Conjecture a current.
I We use the coset formulation of the CPN model: Jµ takes values in

U (N + 1)
U (N )×U (1) (30)

33 / 39



The technicalities

I Write out the generators of U (N + 1).
I Find those elements which form representations of U (N ) and U (1)

and define the orthogonal generators to this space.
I Exponentiate to find the group elements g.
I Define the current Jµ = g†dg|m where the projection is onto the

space orthogonal to U (N )×U (1).
I Equate an appropriate group element with the original instanton

solution and match parameters.
I write the coset current evaluated on the instanton solution
I Calculate: ∫

dx1dx2∂(iJµ†α ∂b)Jαµ (31)
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The result

I The spatial moduli are the same as when we used the lagrangian,
so we still get AdS3. However, we now have moduli related to the
global internal directions.

I We can thus show that for CPN the information metric is given by:

AdS3 × S2N−1 (32)
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and SUSY

I Using a super current as the probability density we can get a
compact space. In fact from N = 4 SU (2), we should be able to
get AdS5 × S5.

I The big question is whether the perturbation of the boundary
leads to Einstein gravity in all ten dimensions. That is still not
known.
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Why do we care?

I The hope is that if we can find the instantons of non-scale free
theories we may be able to derive their dual holographic
geometries using the Fisher metric.

I Clearly we must also figure out how to get the other fields in an
information theoretic manner...

I And see if we must always use a coset model formulation to derive
the metric.
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Conclusions

I Information geometry links information theory and geometric
structures

I Instanton contributions to correlation functions seem to map out
the geometry felt by D(−1) instantons in a specific geometry

I The Fisher Metric seems to be the natural metric on the moduli
space to encode the holographic geometry

I The geometry is, at least to leading order Einstein gravity.
I How can we see the F5?
I What can we understand about deformations?
I What constraints can we put on the correspondence using

information geometry?
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Thank You!
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