Neutrino mass spectroscopy with atoms —Experimental aspects—

N. Sasao and M. Yoshimura (Okayama U.) for SPAN collaboration

Contents

Physics motivation

Key word 1: RENP (radiative emission of neutrino pairs)

Key word 2: Macro-coherent amplification

 Macro coherent amplification and its experimental proof

Key word 3: PSR (paired super-radiance)

Future prospects

Summary

Neutrino physics at present

Experimental principle and its characteristics

- Experimental principle
 - Radiative emission of v-pair $|e
 angle
 ightarrow |g
 angle + \gamma v \overline{v}$
 - Measure photon energy spectrum

RENP(Radiative Emission of Neutrino Pair)

- Merit and demerit using atoms
 - (energy scale of atoms) ~ (neutrino mass scale)
 - Sensitivity to v absolute mass, hierarchy, M-D, CP-phases (α , β – δ)
 - Small rate -> need amplification: e.g. $\Gamma \sim 1/10^{26}$ year for Q=1 eV
 - 「Macro-coherent amplification mechanism」

2015/6/30-7/6

China

"Neutrino Spectroscopy with Atoms and Molecules", A. Fukumi et.al : Prog. Theor. Exp. Phys. **2012**, 04D002

- RENP rate example
 - Γ=50 Hz for Xe ³P₁ (8.4365eV).
 - n=7x 10^20 [cm-3],
 - V=100 cm³, η=10⁻³

Macro-coherent amplification • N^2 • momentum conservation

impact on neutrino physics (1) Absolute mass and hierarchy Example of RENP spectrum(Xe) thresholds: Similar to muon decay spectrum $\omega_{ij} = \frac{E_{eg}}{2} - \frac{(m_i + m_j)^2}{2E_{eg}}$ $M_{\mu} \to evv$ $E_{eg} \to \gamma vv$ Xe RENP:NH vs IH,10,50meV Xe RENP:NH vs IH,10,50meV mo=10 meV 40 40 Xe: 8.4365 eV

"Observables in Neutrino Mass Spectroscopy Using Atoms", D.N. Dinh, S.T. Petcov, N.S, M.Tanaka, M.Yoshimura, Phys. Lett. B 719 (2013) 154–163

impact on neutrino physics (2) Majorana-Dirac & CP-phases

- Majorana-Dirac distinction
 - Identical particle effect

- CP-phase measurements
 - Difference in spectrum

2015/6/30-7/6

China

"Experimental method of detecting relic neutrino by atomic de-excitation" M. Yoshimura, N.S, and M. Tanaka, Phys. Rev D 91, 063516 (2015)

impact on neutrino physics (3) Cosmic neutrino background (1.9K)

- Our universe is filled with 1.9K neutrinos at present.
 - Information after 1-2sec of Big-bang
 - Yet to be observed!
- Observation principle
 - Spectrum change due to Pauli exclusion principle

$$\frac{T_{\nu}}{T_{\gamma}} = \left(\frac{4}{11}\right)^{1/3} ?$$

Contents

Physics motivation

Macro coherent amplification and its experimental proof Key word 3: PSR (paired super-radiance)

Future prospects

2015/6/30-7/6

"Production of Ba Metastable State via Super-Radiance", C. Ohae et.al, JPSJ 83,044301 (2014)

Amplification by coherence among atoms

- Super-Radiance
 - De-excitation via single photon emission

$$R_{\gamma} \propto \left|\sum_{a}^{N} \exp(i\vec{k}\cdot\vec{r}_{a})\mathcal{M}_{a}\right|^{2} \propto N^{2}$$

Macro-coherent amplification

De-excitation via multi-particle emission

$$R_{\gamma\nu\bar{\nu}} \propto \left| \sum_{a}^{N} \exp\left(i(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3}) \cdot \vec{r}_{a} \right) \mathcal{M}_{a} \right|^{2} \\ k_{1} + k_{2} + k_{3} = 0$$

2015/6/30-7/6

$$\lambda$$

$$|e^{2}||e^{2}||e^{2}||e^{2}|$$

$$|e^{2}|$$

China

"Dynamics of two-photon paired superradiance", M. Yoshimura, N. S, and M. Tanaka, PHYSICAL REVIEW A 86, 013812 (2012)

Experimental proof of macro-coherent amplification

- PSR (paired super-radiance)
 - QED process where v-pair is replaced with a photon.
 - A pair of strong light pulses (SR) will be emitted.

"Observation of coherent two-photon emission from the first vibrationally-excited state of hydrogen molecules", Yuki Miyamoto et. al. Prog. Theor. Exp. Phys. **2014**, 113C01

Features of adiabatic Raman process

- Why we use Raman process?
 - Creation of coherence among two levels |e> and |g>

China

Generation of higher side-bands

Eigenstates:

$$|+\rangle = \cos \theta |g\rangle + \sin \theta e^{-i\varphi} |e\rangle$$
$$|-\rangle = \cos \theta e^{-i\varphi} |e\rangle - \sin \theta |g\rangle$$
$$\tan 2\theta = \frac{|\Omega_{eg}|}{\Omega_{gg} - (\Omega_{ee} - \delta)}, \qquad \Omega_{eg} = |\Omega_{eg}| e^{i\varphi}$$

Density matrix
$$\rho = |\psi \rangle \langle \psi|$$

 $\rho_{ge} = \cos \theta \sin \theta e^{i\varphi} = \frac{1}{2} \sin 2\theta e^{i\varphi}$
2015/6/30-7/6

$$\omega_q = \omega_0 + q\Delta\omega, \qquad \Delta\omega = \omega_0 - \omega_{-1},$$

- E1 forbidden v=1-->v=0.
 - Because homo-nuclear diatomic molecule
 - Two photon emission process allowed.
- Para-hydrogen (not ortho-hydrogen)
 - Round wavefunction (less residual interaction).
 - Long coherence time.
- Cooled down(77 K).
 - All ground state(v=0).
 - Longest coherence time (Dicke narrowing).

H₂ gas cell (15 cm long)

L-N, Cryostat

Experimental setup

(a) Laser Setup

(b) Target & Detector

Photograph of whole setup

2015/6/30-7/6

Wavelengths to be remembered and comments

Important wavelengths

- Macro-coherent?
 - Energy conservation

 $\Delta \omega \equiv \omega_0 - \omega_{-1} = \omega_{eg} - \delta,$

$$\Delta\omega = \omega_p + \omega_{\overline{p}}$$

 Momentum conservation law is equivalent to energy conservation law.

Phase factor added to target

$$e^{i\Delta\omega\cdot x/c}$$

$$R = \left|\sum_{a}^{N} e^{i(k_{1}+k_{2})x} M_{a}\right|^{2}$$

• •

2015/6/30-7/6

China

17

Observation of Raman sidebands

- 13 sidebands observed (λ=192 -4662nm)
- Evidence for large coherence

Degree of coherence

Maxwell-Bloch eq.

$$\begin{split} \frac{\partial \rho_{gg}}{\partial \tau} &= i \Big(\Omega_{ge} \rho_{eg} - \Omega_{eg} \rho_{ge} \Big) + \gamma_1 \rho_{gg}, \\ \frac{\partial \rho_{ee}}{\partial \tau} &= i \Big(\Omega_{eg} \rho_{ge} - \Omega_{ge} \rho_{eg} \Big) - \gamma_1 \rho_{ee}, \\ \frac{\partial \rho_{ge}}{\partial \tau} &= i \Big(\Omega_{gg} - \Omega_{ee} + \delta \Big) \rho_{ge} + i \Omega_{ge} \Big(\rho_{ee} - \rho_{gg} \Big) - \gamma_2 \rho_{ge}, \\ \frac{\partial E_q}{\partial \xi} &= \frac{i \omega_q n}{2c} \Big\{ \Big(\rho_{gg} \alpha_{gg}^{(q)} + \rho_{ee} \alpha_{ee}^{(q)} \Big) E_q + \rho_{eg} \alpha_{eg}^{(q-1)} E_{q-1} + \rho_{ge} \alpha_{ge}^{(q)} E_{q+1} \Big\}, \\ \frac{\partial E_p}{\partial \xi} &= \frac{i \omega_p n}{2c} \Big\{ \Big(\rho_{gg} \alpha_{gg}^{(p)} + \rho_{ee} \alpha_{ee}^{(p)} \Big) E_p + \rho_{eg} \alpha_{ge}^{(p\overline{p})} E_{\overline{p}}^* \Big\}. \end{split}$$

Coherence estimated by simulation: (

Observation of two-photon process

Comparison with spontaneous emission

- # of observed photons 4.4 x 10^7/pulse
- # of expected photons due to spontaneous emission

$$\frac{dA}{dz} = \frac{\omega_{eg}^7}{(2\pi)^3 c^6} \left| \alpha_{ge}^{(p\overline{p})} \right|^2 z^3 (1-z)^3 \sim 3.2 \times 10^{-11} \text{ 1/s} \quad (z = \frac{1}{2}) \qquad z = \omega/\omega_{eg}$$
Photon number = $R_0 \cdot \pi w_0^2 L n_0 \cdot A \cdot \frac{\Delta E}{E} \Delta t = 1.6 \times 10^{-8}$

$$\sim 1.5 \times 10^{16} \quad \Delta \Omega/(4\pi) \sim 1.2 \times 10^{-4} \quad \Delta z \sim 4.9 \times 10^{-3} \quad \Delta t \sim 80 \text{ [ns]}$$

- Huge amplification factor of >10⁽¹⁵⁾.
- It can only be understood by macro-coherent amplification mechanism.

How far have we reached?

- RENP rate example
 - Γ =50 Hz for Xe ³P₁ (8.4365eV).
 - n=7x 10^20 [cm-3]
 - V=100 cm³, η=10⁻³

 $\Gamma = n^3 V \eta$ (Spectrum function) η=(average coherence ρ_{eg})x (stored filed energy)/(n ε_{eg})

- PSR experiment
 - P-H2 (0.52eV).
 - n=6x 10^19 [cm-3],
 - V=1.5x10[^]-2 cm[^]3, η=10[^]-3

Caution: Direct comparison is not allowed because different atoms/molecules and/or different interactions (EM-Weak) are involved.

Physics objectives

Macro-coherent amplification

Future prospects

summary

Road map

Study and control PSR.

- PSR detailed study
 - PSR by external trigger
 - Counter propagating PSR
- PSR control
 - Mode switching method
- RENP basic study
 - High density target with coherence
 - Soliton formations
 - Control of background
- RENP experiment

Future (1) PSR by external trigger

What is new and important?

Raman sideband was used as trigger to induce 2-photon process Newly built laser is used as trigger

- Study trigger laser power or timing dependence
- Study coherence generation mechanism

Increase amplification

"Externally triggered coherent two-photon emission from hydrogen molecules", Yuki Miyamoto et. al. arXiv:1505.07663, accepted for publication in in Prog. Theor. Exp. Phys.

Observed coherent two-photon process by an external trigger

Properties of observed signal

2015/6/30-7/6

27

Future (2) Counter propagating PSR

- Why important?
 - Spatially homogeneous coherence
 - Back-to-back two photons (world first observation!)
 - Soliton may be created only with this configuration
- Candidate atoms
 - Ba, Hg, Xe etc.
 (Take Ba as example)

PTEP

Prog. Theor. Exp. Phys. 2014, 073B02 (14 pages) DOI: 10.1093/ptep/ptu094

Two-photon paired solitons supported by medium polarization

0.5

location

"Stopped-light"

Soliton

- Control transparency between p-g by irradiating laser lights (control) between p-e
- Input signal light between p-g, and store information in atomic coherence
- Retrieve information by control laser
- Two-photon version of "Stopped-light"
 - Energy condensed state between light field and matter (medium)
 - Existence expected theoretically
 - Created only in counter-propagating PSR
- Need experimental studies
 - Planning to create soliton by irradiating counter propagating lasers with an appropriate intensity structure predicted by theory.

Overlapping paired soliton

0.2

-0.2

-0.4

-0.6

-0.8

_0.5

2015/6/30-7/6

Example of counter propagating PSR

- Achievable coherence
 - Estimated with optical Bloch eqs
 - Coherence >0.03
- Experimental layout
 - Driving lasers (home made): 1755nm
 - Counter propagating irradiation
 - Trigger laser (home made):1738nm
 - Two photon detection: 1773nm

"Two-photon paired solitons supported by medium polarization", M. Yoshimura and N. S, Prog. Theor. Exp. Phys., vol. 2014, 073B02 (2014)

China

Future (3) RENP basic study

Soliton formation

Develop dense coherent target

- Eg. YSO doped with Eu3+
- Or Pressurized Xe gas target
- n > (a few times) 10²0
- Develop high-power laser system
 - Power x10
- Background control

Red: Field strength Black: Coherence Blue: Population dif.

summary

- RENP
 - Systematic way to measure neutrino's undetermined parameters.
 - Absolute mass, M-D distinction, CP-phases
- Macro-coherent amplification
 - Amplification due to coherence among particles
- PSR
 - Huge amplification >10^15 was observed using two-photon process from p-H2 vibrational levels.
- Future prospect
 - PSR Study in more detail
 - RENP basic study
 - RENP experiment

proves basic part of macro-coherence amplification

4~6 years

Thank you for your attention

- SPAN group (Spectroscopy with Atomic Neutrino)
- K.Yoshimura, A.Yoshimi, S. Uetake, M. Yoshimura, I. Nakano, Y. Miyamoto.
 T. Masuda, H.Hara, K. Kawaguchi, J. Tang (Okayama U.)
- M.Tanaka (Osaka U) , T. Wakabayashi(Kinki U) , A.Fukumi (Kawasaki)
- S. Kuma(Riken), C. Ohae(UEC) , K.Nakajima(KEK) , H.Nanjo (Kyoto)