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Intro. to S-S model in D0-D4

• The brane configuration:
0 1 2 3 4(τ) 5(U) 6 7 8 9

D4 - - - - -
D8 - - - - - - - - -
D0 = = = = -

• Massless Field content:
A

(D4)
µ : U(N) adj; Lorentz vector; UL(Nf )× UR(Nf ), (1,1).

qfL: U(N) fund.; Lorentz spinor 2+; UL(Nf )× UR(Nf ), (fund.,1).

qfR: U(N) fund.; Lorentz spinor 2−; UL(Nf )× UR(Nf ), (1,fund.).



Intro. to S-S model in D0-D4

• The string frame metric in the limit α′ = ℓ2s → 0, U/α′, UKK/α
′ finite.

ds2 =
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U

R

)3/2 (
H

1/2
0 (U)ηµνdx

µdxν +H
−1/2
0 (U)f(U)dτ2

)
+H

1/2
0

(
R

U

)3/2 (
1

f(U)
dU2 + U2dΩ2

4

)
,

eΦ = gs

(
U

R

)3/4

H
3/4
0 , H0 = 1 +

U3
Q0

U3
, f(U) = 1− U3

KK

U3
,

U3
Q0 =

1

2

(
− U3

KK +

√
U6

KK +
(
(2π)5ℓ7sgsκ̃Nc

)2)
, κ̃ = N0/(NcV4) .

Bubble geometry ends at UKK .

• Period of τ :

β =
4π

3
U

−1/2
KK R3/2b1/2 , b ≡ H0(UKK) .



Intro. to S-S model in D0-D4

The relation to the gauge theory

• The four-dimensional gauge coupling: compactified from the five dim

gauge theory g2Y M =
g25
β

= 4π2gsℓs
β

.

• The Chern-Simons term for D4

SCS ∼
∫
dτCτ ∧ tr(F ∧ F ) ⇒ ⟨tr(Fµν F̃

µν)⟩ = 8π2Ncκ̃ (1)

Poicaré invariance is preserved: ⟨Fµν⟩ = 0.

• Expressed using ’t Hooft coupling λ = g2Y MNc:

R3 =
βλℓ2s
4π

, β =
4πλℓ2s
9UKK

b , MKK ≡ 2π

β
=

9

2

UKK

λℓ2sb
.

b =
1

1− (2πℓ2s)
8

81U8
KK

λ4κ̃2
. (2)

• A constraint on κ̃

|κ̃| ≤ 9U4
KK

(2πℓ2s)4λ2
=
λ2M4

KKb
4

93π4
. (3)

• For fixed κ̃, the larger λ is , the smaller b is.



Intro. to S-S model in D0-D4

• b monotonically depends on κ̃, ξ ≡ |κ̃|
λ2M4

KK
. The dependence on κ̃ is

qualitatively the same as the dependence on b

0 0.0001 0.0002
Ξ

1.5

2.

b

Estimation:If |κ̃| < M4
KK and λ ∼ 100(or 103), 0 < ξ < 10−4 (10−6) and

1 < b < 1.81(1.005).
If |κ̃| < (2MKK)4 and λ = 100, 1 < b < 3.41.

• For the supergravity solution can be used, curvature should be small

compared to the string scale: 1 ≪
∣∣∣ 1
Rℓ2s

∣∣∣⇒ λ large.

• For the supergravity to be a low energy effective theory of string theory, to
suppress the string loop effect : eΦ ≪ 1 ⇒ U ≪ g

−4/3
s R ≡ Ucrit, and we

require Ucrit ≫ UKK , then

g4Y M ≪ 1

g2Y MNc
≪ 1 (4)

Strong λ region.



Intro. to S-S model in D0-D4

Independent parameters:

• Gravity side: R3, U3
Q0

, UKK , gs.

• Gauge theory side: Nc, MKK , λ,κ̃.

• Relations:

R3 =
λℓ2s

2MKK
gs =

λ

2πMKKNcℓs
, UKK =

2

9
MKKλℓ

2
sH0(UKK) .

κ̃ ∼ b.



Intro. to S-S model in D0-D4

Put the D8 into the D4 geometry. The embeded metric on D8:

ds2 =

(
U

R

)3/2

H0(U)−1/2

(
f(U) +

(
R

U

)3
H0(U)

f(U)
U ′2
)
dτ2

+

(
U

R

)3/2

H
1/2
0 (U)ηµνdx

µdxν +H
1/2
0 (U)

(
R

U

)3/2

U2dΩ2
4 . (5)

Change of coordinate: U3 = U3
KK + UKKr

2, y = r cos θ , z = r sin θ.

• Non-antipodal: Dashed line with non-zero κ̃.

• For simplicity: D8 at y = 0

• The configuration is stable w.r.t. y perturbations.

• Massless Goldstones still exist. Masses of mesons can be studied.



Baryons in S-S in D0-D4: Classical Soliton

Adding Nf D8 branes ↔ adding Nf flavors

• Scalar mesons are the excitations of y coordinate, and the vector
component Az—Goldstone, Nf ×Nf flavor matrix. We consider Nf = 2
here.

• Vector mesons are the excitations of Aµ, µ = 0, 1, 2, 3, Nf ×Nf flavor
matrix.

• Baryons can be viewed as solitons on D8 like skymion. Chern-Simons term
in

SD8 ∼ tr(

∫
A ∧ F ∧ F ) ∧ F4 ∼ Nc

∫
dt Â0 ∧ tr(F ∧ F ) .

F is the field strength of SU(2) gauge field Aµ. Â is the U(1) field
coupled to the U(1) current, charge is the quark number.

• Soliton in x1, x2, x3 and z, “Instanton” number∫
tr(F ∧ F ) ∼ Nq/Nc=Baryon number.



Baryons in S-S in D0-D4: Classical Soliton

Solving the EOM at large λ approximation.
Action of excitations on D8: SD8 = SY M + SCS

SYM ∼ −
∫

d
4
xdz 2H

1/2
0 (U)tr

 1

4

R3

U
FµνFµν

+
9

8

U3

UKK

FzµFzµ


SCS =

Nc

24π2

∫
M4×R

ω5(A) , ω5(A) = tr

(
A ∧ F ∧ F −

1

2
A3 ∧ F +

1

10
A5

)
.

• Rescaling: z → zUKK , Az → Az/UKK , xµ → xµ/MKK , Aµ → AµMKK

→ dimensionless fields
• Extracting the λ orders: M,N = 1, 2, 3, z.

x0 → x0 , xM → λ−1/2xM

A0(t, x) → A0(t, x) , AM (t, x) → λ1/2AM (t, x)

F0M (t, x) → λ1/2F0M (t, x) , FMN (t, x) → λFMN (t, x) ,

• Expand the action to O(λ0)

SYM = − aNcb
3/2

∫
d
4
xdz

λ

4
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a
MN )
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b z2

2
(

5
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−

1

4b
)(F

a
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2
+

b z2

4
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1

b
)(F

a
iz)

2 −
1

2
(F

a
0N )

2

+
λ

4
F̂

2
MN −

b z2

2
(

5

12
−

1

4b
)F̂

2
ij +

b z2

4
(1 +

1

b
)F̂

2
iz −

1

2
F̂

2
0N + O(λ

−1
)


SCS =

Nc

24π2
ϵMNPQ

∫
d
4
xdz[

3

8
Â0tr(FMNFPQ) −

3

2
ÂMtr(∂0ANFPQ)

+
3

4
F̂MNtr(A0FPQ) +

1

16
Â0F̂MNF̂PQ −

1

4
ÂM F̂0NF̂PQ + (...)] (6)



Baryons in S-S in D0-D4: Classical Soliton

EOM’s: FMN SU(2) part; F̂MN , U(1) part.

DMFMN = 0 , DMF
a
0M +

ϵMNPQ

64π2ab3/2
F̂MNF

a
PQ = 0 (7)

∂M F̂MN = 0 , ∂M F̂0M +
ϵMNPQ

128π2ab3/2
F a
MNF

a
PQ = 0 (8)

Soliton solution without time dependence:

• BPST solution for FMN :

AM = −if(ξ)g−1(x)∂Mg(x),

f(ξ) =
ξ2

ξ2 + ρ2
, ξ2 = (x⃗− X⃗)2 + (z − Z)2, g(x) =

1

ξ
((z − Z)− i(x⃗− X⃗) · σ⃗) ,

(9)

• U(1) part ÂM = 0 up to a pure gauge.

• SU(2) A0: D
2
MA0 = 0, with vanishing boundary condition, A0 = 0.

• U(1) Â0:

−∂2
M Â0 +

3ρ4

π2ab3/2(ξ2 + ρ2)4
= 0

Â0 = − 1

8π2ab3/2
ξ2 + 2ρ2

(ρ2 + ξ2)2
.



Baryons in S-S in D0-D4: Classical Soliton

Substitute the solution into the action: the soliton mass from the on-shell
action S = −

∫
dtM :

M = 8π2ab3/2Nc

(
λ+

1

12
(3− b)(2Z2 + ρ2)︸ ︷︷ ︸
Attractive potential

+
1

320π4ρ2a2b3︸ ︷︷ ︸
Repulsive potential

+O
( 1

λ

))

• For b < 3, at the minimum, ρmin characterizes the size of the baryon

• b small: the attractive potential
dominant: ρ decreases

• b large: the repulsive potential
dominant: ρ increases

ρ2min =
1

4π2

√
3

5

1

ab3/2
√
3− b

.

1.0 1.5 2.0 2.5 3.0
b

7

8

9

10

11

12
Ρmin

• Minimum mass:

Mmin = 8π2ab3/2Nc

(
λ+ 9π

√
3

5

√
3− b

b3/2
+

1

6
(3− b)Z2 +O

( 1
λ

))
.



Baryons in S-S in D0-D4: Classical Soliton

• The size decreases first.

• At b = 3, the size blows up : the instability of the baryon

• At b = 3, the second and the third term in Mmin vanish.

• In fact at b = 3, the 1/λ expansion may not be valid.

• Estimate how much we could trust the 1/λ expansion:
(1)Expansion of SY M : Compare SY M with expansion and without
expansion ⇒ the larger λ is, the larger the region of b is. λ ∼ 100 (or
250), 1 < b < 1.5 (1.8).
(2) From previous discussion, for κ̃ < M4

KK and λ ∼ 100 (or 250),
1 < b < 1.81(1.25). The larger λ is, the smaller the region of b is.
(3) If we allow the massive mode to come in, abandoning κ̃ < M4

KK , the
constraint of (2) no longer exists. As long as we choose large enough λ, b
can approach 3 without invalidating the expansion. The size of the baryon
really blows up and the baryon is unstable.
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Left: λ = 100; Right:λ = 250



Baryons in S-S in D0-D4: collective coordinate quantization

• The moduli for the one instanton BPST solution, M = R4 × R4/Z2:

X⃗, Z, size ρ, SU(2) orientation aI , I = 1, 2, 3, 4,
∑

I a
2
I = 1.

Collectively: Xα = (X⃗(t), Z(t), yI(t))

• Make them time dependent:Acl
M (x,Xα(t)) the BPST solution

Φ = −iV −1V̇ , AM (t, x) = V Acl
M (x,Xα(t))V −1 − iV ∂MV

−1.

FMN = V F cl
MNV

−1 , F0M = V (Ẋα∂αA
cl
M −Dcl

MΦ)V −1,

V (x, t) is a SU(2) 2× 2 matrix which is asymptotic to
a = a4(t) + iaa(t)σ

a at z → ∞
• Insert into the Lagrangian: to O(1/λ)

L =
1

2
mXgαβẊ

αẊβ − U(Xα) (10)

=
1

2
mX

˙⃗
X2 +

1

2
mZŻ

2 +
1

2
my ẏI ẏI − U(Xα) (11)

ds2 = gαβdX
αdXβ = dX⃗2 + dZ2 + 2dy2I

mX = mZ = 1
2
my = 8π2ab3/2Nc



Baryons in S-S in D0-D4: collective coordinate quantization

• Hamiltonian:

H = HX +HZ +Hy ,

HX =
1

2mX
P 2
X +M0 , M0 = 8π2λab3/2Nc

HZ =
1

2mZ
P 2
Z +

1

2
mZω

2
ZZ

2 , ωZ =
1

3
(3− b),

Hy =
1

2my
P 2
y +

1

2
myω

2
yρ

2 +
Q

ρ2
, Q =

Nc

40π2ab3/2
, ωy =

1

12
(3− b), .

• Quantization: PX → −i∂X ,Py → −i∂y,PZ → −i∂Z
• Fermion wave function: ψ(X), anti-periodic boundary condition.



Baryons in S-S in D0-D4: collective coordinate quantization

• Solve the Shrödinger eq: energy eigenvalues:

M = M0 + Ey + EZ , M0 =
λNcb

3/2

27π
(12)

Ey = ωy(l̃ + 2nρ + 2) = ωy(
√

(l + 1)2 + 2myQ + 2nρ + 1)

=
1

2
√
3

√
3 − b

(√
(l + 1)2 +

4

5
N2

c + 2nρ + 1

)
, (13)

EZ = ωZ(nz +
1

2
) =

1
√
3

√
3 − b(nz +

1

2
) (14)

I = J = l/2.
• The zero point energy can not be determined to order N0

c

order.[Prog.Theor.Phys.117:1157,2007]
• We look at the mass difference between baryons:

M =M0 +

√
3− b

2

(
Ey(b = 1) + EZ(b = 1)

)
, ∆M =

√
3− b

2
∆M(b = 1) (15)

• The mass difference decreases with κ̃: vanishes at b = 3 at λ0.
• For |κ̃| < M4

KK , only b near 1 can be trusted.
• For |κ̃| > M4

KK , b can be in a larger region. For b > 3, ∆M become
imaginary — an indication of the instability of baryons.

• The scale factor
√
3− b is independent of different quantum numbers of

the baryons.



Summary

• We studied the effect of the smeared D0 charges on the baryons in the S-S
model.

• The classical analysis: The size of the baryon shrinks first and then
increases to blow up at b = 3 in the leading λ expansion.

• The quantum analysis: The mass difference decreases.

• Only b near 1 can be trusted for massless gauge theory.

• If we also interested in the massive mode in the gauge theory, the baryon
may be unstable for large b.

• Large Nc limit: for the 1/λ expansion to be valid, Nc should not be small
comparable to 3.
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