Neutrino Masses and Conformal
Electro-Weak Symmetry Breaking

Manfred Lindner

MAX-PLANCK-INSTITUT
FÜR KERNPHYSIK
HEIDELBERG

Institute of High Energy Physics
Chinese Academy of Sciences

Oct. 31, 2014
Neutrino Mass Terms: New Physics...

Simplest possibility: add 3 right handed neutrino fields

\[\nu_L \quad g_N \quad \nu_R \]
\[<\phi> = v \]

Majorana

\[\nu_R \quad \nu_R \]

\[(\nu_L \quad \nu_R^c) \begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix} (\nu_L^c \quad \nu_R) \]

like quarks and charged leptons \(\rightarrow \) Dirac mass terms (including NMS mixing)

New ingredients:
1) Majorana mass (explicit)
2) lepton number violation

6x6 block mass matrix
block diagonalization
\(M_R \) heavy \(\rightarrow \) 3 light \(\nu \)'s

NEW ingredients, 9 parameters \(\rightarrow \) SM+
Are right-handed neutrinos established?

New scalar tripelts \((3_L)\) or fermionic \(1_L\) \(\rightarrow\) \(3_L\)

\(\Rightarrow\) left-handed Majorana mass term:

\[M_L \overline{L} L^c \]

Both \(\nu_R\) and new singlets / triplets:

\(\Rightarrow\) see-saw type II, III

\[m_\nu = M_L - m_D M_R^{-1} m_D^T \]

Higher dimensional operators: \(d=5, \ldots\)
Radiative neutrino mass generation

SUSY, extra dimensions, ...

- inspiring options, many questions, connections to LFV, LHC, ...
- SM+ can/may solve two of the SM problems:
 - Leptogenesis as explanation of BAU
 - keV sterile neutrinos as excellent warm dark matter candidate

progress:
- new experimental results ...waiting...
- theoretical guidance ...guessing...
Guidance by the larger Picture: GUTs

Gauge unification suggests GUTs

Ingredients:
- unified gauge group
- unified particle multiplets ↔ ν_R
 → Q,L Yukawa couplings connected

→ proton decay, ...
- generations are just copies

\[\begin{align*}
\text{Quarks} & : & u & c & t \\
& & \sim 5 & \sim 1350 & 175000 \\
& & -1/3 & -1/3 & -1/3 \\
\text{Leptons} & : & \nu_1 & \nu_2 & \nu_3 \\
& & 0^+ & 0^+ & 0^+ \\
& e & \mu & \tau \\
& \text{1.} & \text{2.} & \text{3. generation}
\end{align*} \]
Flavour Unification

- so far no understanding of flavour, 3 generations
- apparent regularities in quark and lepton parameters
 ➔ flavour symmetries (finite number for limited rank)
 ➔ symmetry not texture zeros

Examples:

\[O(3)_L \times O(3)_R \]

\[\text{SU}(3) \]
\[\text{SO}(3) \]
\[\text{SU}(2) \]
\[\text{A}_4; Z_3 \triangleleft Z_2 \]
\[\text{U}(1) \]
\[\text{S}(3)_L \times S(3)_R \]
\[\text{S}(3) \]

Leptons Quarks
1. 2. 3. generation

\begin{array}{cccc}
u & c & t \\
\hline
2/3 & 2/3 & 2/3 \\
-1/3 & -1/3 & -1/3 \\
0 & 0 & 0 \\
\end{array}

\begin{array}{cccc}
d & s & b \\
\hline
-1/3 & -1/3 & -1/3 \\
-2/3 & -2/3 & -2/3 \\
0 & 0 & 0 \\
\end{array}

\begin{array}{cccc}
\nu_1 & \nu_2 & \nu_3 \\
\hline
0.511 & 0.511 & 0.511 \\
105.66 & 105.66 & 105.66 \\
1777.2 & 1777.2 & 1777.2 \\
\end{array}
GUT & Flavour Unification

GUT group x flavour group

example: $SO(10) \times SU(3)_F$

- SSB of $SU(3)_F$ between Λ_{GUT} and Λ_{Planck}
- all flavour Goldstone Bosons eaten
- discrete sub-groups survive \leftrightarrow SSB
e.g. Z_2, S_3, D_5, A_4, ...

\Rightarrow structures in flavour space
\Rightarrow compare with data

\Rightarrow aim: distinguish models by future precision and learn about the origin of flavour

\Rightarrow reality so far: many models get killed by data (see e.g. θ_{13}...)
Generic & Suggestive See-Saw Features

QFT: natural value of mass operators \leftrightarrow scale of symmetry

$m_D = g_D v$; $v \sim$ electro-weak scale; $0 \leq g_D \leq 2 \Rightarrow 0 \leq m_D \leq 2v$

$M_R \sim L$ violation scale $\leftrightarrow?\Rightarrow$ embedding (GUTs, …)

See-saw (type I)

$m_\nu = m_D M_R^{-1} m_D^T$

$m_h = M_R$

Numbers: For $m_3 \sim (\Delta m^2_{\text{atm}})^{1/2}$, $m_D \sim$ leptons \Rightarrow $M_R \sim 10^{11} - 10^{16}$GeV

M_R suggests that sterile neutrinos must be very heavy – really?

\Rightarrow are there indications / arguments for light sterile states?

\Rightarrow theoretical arguments in favour of light steriles
2nd Look Questions

Quarks & charged leptons → hierarchical masses → neutrinos?

Quarks and charged leptons:
$m_D \sim H^n; \ n = 0, 1, 2 \Rightarrow H \geq 20...200$

Neutrinos: $m_\nu \sim H^n \Rightarrow H \leq 10$

See-saw:

$m_\nu = -m_D^T M_R^{-1} m_D$

→ inversely correlated hierarchy in M_R? → not related!
→ other version of see-saw? → type II, III, …? Dirac masses?
→ b.t.w: see-saw may explain tiny masses, but what about mixings…?
Neutrino masses require some new BSM physics:
- Simplest option: add ν_R
- Many other options with new fields, symmetries, concepts
- Dirac or Majorana?
- If Majorana \rightarrow heavy steriles quite natural, but not testable…

What about `Light’ Sterile Neutrinos?

Light is any value $\ll 10^{13}$ GeV

3x3 leptonic mixing matrix of active ν’s is almost unitary
\Rightarrow at most small admixtures of sterile ν’s Antusch et al., others…
Hints / Arguments / … for Sterile Neutrinos

Particle Physics: LSND, Gallium, MiniBooNE, reactor anomaly, …

CMB: $N_\nu = 3.3 \pm 0.27 \rightarrow$ extra eV-ish ν’s possible PLANCK 2013

BBN: $N_\nu = 3$-4 \rightarrow possible e.g. Coc

Astrophysics: keV-ish sterile neutrinos could explain pulsar kicks
Kusenko, Segre, Mocioiu, Pascoli, Fuller et al., Biermann & Kusenko, Stasielak et al., Loewenstein et al., Dodelson, Widrow, Dolgov, …

Dark matter: keV sterile neutrinos are excellent WDM
Asaka, Blanchet, Shaposhnikov, … ML, Bezrukov, Hettmanperger

Sterile ν’s and improved EW fits: TeV-ish ν’s improve χ^2
Akhmedov, Kartavtsev, ML, Michaels and J. Smirnov

Most likely not all true, but one is enough:
VERY IMPORTANT IMPLICATIONS \rightarrow new direct experiments
Options for Neutrino Mass Spectra

\[
\begin{pmatrix}
\bar{\nu}_L & \bar{\nu}_R^c
\end{pmatrix}
\begin{pmatrix}
M_L & m_D & \nu_L^c \\
m_D & M_R & \nu_R
\end{pmatrix}
\begin{pmatrix}
\nu_L \\
\nu_R
\end{pmatrix}
\]

\(M_L, m_D, M_R\) may have almost any form / values:
- zeros (symmetries)
- 0 + tiny corrections
- scales: \(M_W, M_{GUT}\), ...

\(\Rightarrow\) diagonalization: 3+N EV
\(\Rightarrow\) 3x3 active almost unitary

- \(M_L = 0, m_D = M_W, M_R = \text{high: see-saw}\)
- \(M_R\) singular singular-SS
- \(M_L = M_R = 0\) Dirac
- \(M_L = M_R = \epsilon\) pseudo Dirac

M. Lindner, MPIK
Interesting Directions: E.g. Pseudo Dirac Neutrinos

• Might be useful / indications (?) from SK-upturn (see e.g. A. Smirnov)
• May also be useful in HE neutrinos and GRBs (see e.g. Esmaili and Farzan)
• Theory ideas
 - mirror worlds (e.g. Joshipura, Mohanty, Pakvasa)
 - implications for $0\nu\beta\beta$ (e.g. P.Gu)
 - role in leptogenesis (e.g. Abel, Page)
 - left right symmetry and gauged B,L (e.g. Duerr, Perez, ML)
 - … sugra (e.g. Dedes)
 - … many others
Explaining light Sterile Neutrinos

Possible scenario: See-saw + a reason why 1 sterile ν is light

- heavy sterile neutrinos typ. $\geq 10^{13}$ GeV

- extra dimensional physics → ‘split see-saw’
 - Kusenko, Takahashi, Yanagida,

- flavour symmetries explaining active neutrino masses + charged leptons + quarks
 - consequences for heavy mass matrix
 - $L_e - L_\mu - L_\tau$ DM ↔ flavour problem
 - ML, Merle, Niro ; Merle, Niro,
 - Barry, Rodejohann, Zhang
 - one light sterile neutrino \sim keV = DM

- light active neutrinos $< eV$
Light Sterile Neutrinos from $L_e - L_\mu - L_\tau$

- Flavour symmetries have been studied to explain apparent regularities of masses and mixing: $A4$, $S3$, $D5$, …
 - implications for sterile sector?
 - could the same symmetries explain a keV-ish sterile ν?

Model with $L_e - L_\mu - L_\tau$ symmetry:
 - by Lavoura & Grimus \Rightarrow extended: ML, Merle, Niro
 $\text{SM} + \nu_{iR} +$ softly broken $U(1) \leftrightarrow \mathcal{F} \equiv L_e - L_\mu - L_\tau$
 - type II see-saw \Rightarrow +Higgs triplet

$$\Delta = \begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix}$$

<table>
<thead>
<tr>
<th></th>
<th>$L_e L$</th>
<th>$L_\mu L$</th>
<th>$L_\tau L$</th>
<th>e_R</th>
<th>μ_R</th>
<th>τ_R</th>
<th>N_{1R}</th>
<th>N_{2R}</th>
<th>N_{3R}</th>
<th>ϕ</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{F}</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

M. Lindner, MPIK
• Mass matrix for right-handed neutrinos:

\[\mathcal{L}_{\text{mass}} = -M_R^{12} \, (N_{1R})^C \, N_{2R} - M_R^{13} \, (N_{1R})^C \, N_{3R} + h.c. \]

• Dirac masses

\[\mathcal{L}_{\text{mass}} = -Y_D^{e1} \, \overline{L_e} \, \tilde{\phi} \, N_{1R} - Y_D^{\mu2} \, \overline{L_{\mu}} \, \tilde{\phi} \, N_{2R} - Y_D^{\mu3} \, \overline{L_{\mu}} \, \tilde{\phi} \, N_{3R} - Y_D^{\tau2} \, \overline{L_{\tau}} \, \tilde{\phi} \, N_{2R} - Y_D^{\tau3} \, \overline{L_{\tau}} \, \tilde{\phi} \, N_{3R} + h.c., \]

• In addition: Triplet masses

\[\mathcal{L}_{\text{mass}} = -Y_L^{e\mu} \, (\overline{L_e})^C (i\sigma_2 \Delta) \, L_{\mu} - Y_L^{e\tau} \, (\overline{L_e})^C (i\sigma_2 \Delta) \, L_{\tau} + h.c. \]
Example: Singular heavy neutrino mass matrix:

\[
\Psi \equiv ((\nu_{eL})^C, (\nu_{\mu L})^C, (\nu_{\tau L})^C, N_{1R}, N_{2R}, N_{3R})^T
\]

\[
M_\nu = \begin{pmatrix}
0 & m_{e\mu}^e & m_{e\tau}^e & m_{e1}^D & 0 & 0 \\
0 & 0 & 0 & m_{D}^{\mu2} & 0 & m_{D}^{\mu3} \\
0 & 0 & 0 & m_{D}^{\tau2} & m_{D}^{\tau3} & m_{D}^{\tau3}
\end{pmatrix}
\]

\[\det(M_{ij}) = 0 \implies M_1 = 0\]

- massless sterile state + soft breaking
- naturally light sterile \(\nu\)
- mechanism possible in many models
Leptogenesis

...there still exist heavy sterile states ...

m_ν

heavy sterile neutrinos typ. $> 10^{13}$ GeV

\Rightarrow Leptogenesis from the decay of the remaining heavy sterile neutrinos works perfectly!
Bezrukov, Kartavtsev, ML

leptogenesis

one light sterile neutrino \sim keV = DM

light active neutrinos $< eV$
Sterile Neutrinos & Conformal
Electro-Weak Symmetry Breaking
SM: Triviality and Vacuum Stability Bounds

126 GeV < m_H < 174 GeV

- RGE arguments seem to work
- just SM?
- no BSM physics observed!
- just a SM Higgs

ML '86

126 GeV is here!
λ(M_{pl}) ∼ 0
- EW-SB radiative
- just SM?

Holthausen, ML, Lim (2011)

SM does not exist w/o embedding
- U(1) coupling, Higgs self-coupling

Landau pole

Λ(GeV)

ln(μ)

Λ

10^3
10^6
10^10
10^15
10^19

m_t (GeV)

m_H (GeV)

0
100
200
300
400
500

ML, MPIK
Is the Higgs Potential at M_{Planck} flat?

Notes:

- remarkable relation between weak scale, m_t, couplings and M_{Planck} ↔ precision
- strong cancellations between Higgs and top loops
 → very sensitive to exact value and error of m_H, m_t, $\alpha_s = 0.1184(7)$ → currently 1.8σ in m_t
- higher orders, other physics, ... Planck scale thresholds... Lalak, Lewicki, Olszewski,
 → important: watch central values & errors → important: new physics ↔ DM, m_ν
The Hierarchy Problem: Specify Λ

- Renormalizable QFTs with two scalars φ, Φ with masses m, M and a mass hierarchy $m << M$
- These scalars must interact since $\varphi^+\varphi$ and $\Phi^+\Phi$ are singlets
 $\Rightarrow \lambda_{\text{mix}}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist in addition to φ^4 and Φ^4
- Quantum corrections $\sim M^2$ drive both masses to the (heavy) scale
 \Rightarrow two vastly different scalar scales are generically unstable

Therefore: If (=since) the SM Higgs field exists
\Rightarrow problem: embedding with a 2$^{\text{nd}}$ scalar with much larger mass
\Rightarrow usual solutions:

\begin{align*}
a) & \text{new scale @TeV} \\
b) & \text{protective symmetry @TeV}
\end{align*}

\Rightarrow LHC!

b) is usually SUSY, but SUSY & gauge unification = SUSY GUT
 \Rightarrow doublet-triplet splitting problem \Rightarrow hierarchy problem back
Conformal Symmetry as Protective Symmetry

- Exact (unbroken) CS
 - absence of Λ^2 and $\ln(\Lambda)$ divergences
 - no preferred scale and therefore no scale problems

- Conformal Anomaly (CA): Quantum effects explicitly break CS
 - existence of CA \rightarrow CS preserving regularization does not exist
 - dimensional regularization is close to CS and gives only $\ln(\Lambda)$
 - cutoff reg. \rightarrow Λ^2 terms; violates CS badly \rightarrow Ward Identity

Bardeen: maybe CS still forbids Λ^2 divergences
 - CS breaking \leftrightarrow β-functions \leftrightarrow $\ln(\Lambda)$ divergences
 - anomaly induced spontaneous EWSB

IMPORTANT: The conformal limit of the SM (or extensions) may have no hierarchy problem!
Implications

Gauge invariance \Rightarrow only log sensitivity

Relics of conformal symmetry \Rightarrow only log sensitivity

- With CS there no hierarchy problem, even though it has anomaly
- Dimensional transmutation due to log running like in QCD
 \Rightarrow scalars can condense and set scales like fermions
 \Rightarrow use this in Coleman Weinberg effective potential calculations
 \leftrightarrow most attractive channels (MAC) \leftrightarrow β-functions
Why the minimalistic SM does not work

Minimalistic:

SM + choose $\mu = 0 \iff$ CS

Coleman Weinberg: effective potential

\Rightarrow CS breaking (dimensional transmutation)

\Rightarrow induces for $m_t < 79$ GeV

a Higgs mass $m_H = 8.9$ GeV

This would conceptually realize the idea, but:

Higgs too light and the idea does not work for $m_t > 79$ GeV

Reason for $m_H << v$: V_{eff} flat around minimum

$\iff m_H \sim$ loop factor $\sim 1/16\pi^2$

AND: We need neutrino masses, dark matter, …
Realizing the Idea via Higgs Portals

- SM scalar Φ plus some new scalar φ (or more scalars)
- CS \rightarrow no scalar mass terms
- the scalars interact $\Rightarrow \lambda_{\text{mix}}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist

\Rightarrow a condensate of $<\varphi^+\varphi>$ produces $\lambda_{\text{mix}}<\varphi^+\varphi>(\Phi^+\Phi) = \mu^2(\Phi^+\Phi)$
\Rightarrow effective mass term for Φ

- CS anomalous … \rightarrow breaking \rightarrow only $\ln(\Lambda)$
\Rightarrow implies a TeV-ish condensate for φ to obtain $<\Phi> = 246$ GeV

- Model building possibilities / phenomenological aspects:
 - φ could be an effective field of some hidden sector DSB
 - further particles could exist in hidden sector; e.g. confining…
 - extra hidden U(1) potentially problematic \leftrightarrow U(1) mixing
 - avoid Yukawas which couple visible and hidden sector
\Rightarrow phenomenology safe due to Higgs portal, but there is TeV-ish new physics!
Realizing the Idea: Other Directions

SM + extra singlet: \(\Phi, \varphi \)
Nicolai, Meissner, Farzinnia, He, Ren, Foot, Kobakhidze, Volkas

SM + extra SU(N) with new N-plet in a hidden sector
Ko, Carone, Ramos, Holthausen, Kubo, Lim, ML

SM embedded into larger symmetry (CW-type LR)
Holthausen, ML, M. Schmidt

SM + colored scalar which condenses at TeV scale
Kubo, Lim, ML

Since the SM-only version does not work \(\Rightarrow \) observable effects:
- Higgs coupling to other scalars (singlet, hidden sector, …)
- dark matter candidates \(\Leftarrow \Rightarrow \) hidden sectors & Higgs portals
- consequences for neutrino masses
Implications for Neutrino Masses

• No explicit scale ➔ no explicit (Dirac or Majorana) mass term
 ➔ only Yukawa couplings ⊗ generic scales

• Enlarge the Standard Model field spectrum
 like in 0706.1829 - R. Foot, A. Kobakhidze, K.L. McDonald, R. Volkas

• Consider direct product groups: SM ⊗ HS

• Two scales: CS breaking scale at O(TeV) + EW scale

 ➔ spectrum of Yukawa couplings ⊗ TeV or EW scale
 ➔ many possibilities
Examples

\[\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle \\ y_D^T \langle H \rangle & y_M \langle \phi \rangle \end{pmatrix} \]

\(\Rightarrow \) generically expect a TeV seesaw

BUT: \(y_M \) might be tiny

\(\Rightarrow \) wide range of sterile masses \(\Rightarrow \) includes pseudo-Dirac case

Yukawa seesaw:

SM + \(\nu_R \) + singlet

\(\langle \phi \rangle \approx \text{TeV} \)

\(\langle H \rangle \approx 1/4 \text{ TeV} \)

Radiative masses

\[\mathcal{M} = m_L \]

\[\mathcal{M} = \begin{pmatrix} \mu_1 & y_D \langle H \rangle \\ y_D^T \langle H \rangle & \mu_2 \end{pmatrix} \]

\(\Rightarrow \) pseudo-Dirac case
More Examples: Inverse Seesaw

Seesaw & LNV

\[\nu_R : (1_{SU(2)}, 0_Y, 0_{HS}) \]

\[\nu_x : (1_{SU(2)}, 0_Y, n_{HS}) \]

\[\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle & 0 \\ y_D^T \langle H \rangle & 0 & y_{Rx} \langle \phi \rangle \\ 0 & y_{Rx}^T \langle \phi \rangle & \mu \end{pmatrix} \]

\[\epsilon = \frac{1}{2} y_D^\dagger (y_{Rx}^{-1})^* \left(y_{Rx}^{-1}\right)^T y_D \cdot \frac{\langle H \rangle^2}{\langle \phi \rangle^2} \]

\[\langle \phi \rangle > \langle H \rangle \text{ and } m_\nu \approx \mu \epsilon \]

\(\mu \) is suppressed (LNV) natural scale keV

The punch line:

- all usual neutrino mass terms can be generated
- No explicit masses\(\Rightarrow \) all via Yukawa couplings\(\Rightarrow \) different numerical expectations
SM works perfectly – no signs of new physics

The standard hierarchy problem suggests TeV scale physics … which did (so far…) not show up

Revisit how the hierarchy problem may be solved

- $\lambda(M_{\text{Planck}}) = 0$? ↔ precise value for m_t
- Embeddings into QFTs with classical conformal symmetry
 - SM: Coleman Weinberg effective potential – excluded
 - extended versions → work!
 → implications for Higgs couplings, dark matter, …
 → implications for neutrino masses
 → testable consequences @ LHC, DM search, neutrinos