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@ Duality
A-model topological string: combinatorical explanation
B-model topological string: wave function explanation

@ Zhou’s identity
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Chern-Simons theory on S3

@ Surgery from S2 to S§? x S

@ Unknot

@ Link



The topological vertex

Conifold transition from T*S2 to resolved conifold

With D-branes

Lo




Symmetric functions

In this talk the specific symmetric function is called Schur
function. It is a generating series for semistandard Young
tableaux.

For example
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each Young tableaux gives rise to a monomial. Hence
Se.1(X1, X2, X3) is
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Fermionic excitation and 2D Young diagram

P(n) = [T, == has a fermionic excitation description.

d(\)
) Ae|A) = H YV (a)¥Z (5)10)
. ’ i=1
v 1 .
b b a,-:)\,-—l—l—§, b,‘:)\,t-—l-f-é

by
Because of boson-fermion correspondence boson and fermion

excitation modes satisfy

an = Z Yty i

rez+1/2

It is clear how a, can act on 2D Young diagram.
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Nakajima’s formula
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where M(q) is the MacMahon
function. It is the generating function
for 3D Young diagrams namely
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M(q) = H i qn =) 4q"
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where |r| counts the number of boxes in 3D Young diagram .



3D Young diagram

@ Definition

@ The diagonal slicing
Interlacing condition

{ AE) = At+1) t>0
A= At—-1) t<O0

where

A= = N> >
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Vertex operators and generating series

@ (Half) vertex operators are defined as

V. (z) = exp {Z _a—’;)z‘”} . V(2)=exp {Z ar_)"zn} ,

n>0 n>0

Vi(z) = exp {Z %z‘”} . Vi(2) =exp {Z "i—_r';z”} :

n>0 n>0
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Vertex operators and generating series

@ (Half) vertex operators are defined as

V. (2) = exp {Z a—’;)z‘”} . V.(z)=exp {Z ar_)”z”} ,

n>0 n>0

Vi(z) = exp {Z %z‘”} . Vi(2) =exp {Z "i—_r';z”} :

n>0 n>0

@ The generating series are
[ V-(z) ZSA z)s\(a HV* z) ZSA Nsy(as),
i

@ V_ can be treated as the creatlon operator wh|Ie V} the
annihilation of 2D Young diagrams, i.e.

0y =D X VEGOIE) = XM

11/26



The A-model: the topological vertex
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Switching V_ « V7, we obtain

H v ( t+p V* (q77")|0) = H1_qh

s¢v
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The B-model approach in ADKMV

@ Define fermion vacuum state |vac),

|vac) = H Vmi1/20ms1/210)

m>0
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The B-model approach in ADKMV

@ Define fermion vacuum state |vac),
|vac) = H Umi1/2¥ms1/2/0)
m>0

@ A Bogoliubov transformation of the fermion vacuum state
from a 0-vacuum to an oo-vacuum is defined as

<V| 0| exp{ Z amn¢m+1/2¢n+1/2}

m,n>0

Ward identity and the information of free fermion insertions
determine an,.
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The B-model approach in ADKMV

@ Define fermion vacuum state |vac),
|vac) = H Vmi1/2¥mi1,2/0)
m>0

@ A Bogoliubov transformation of the fermion vacuum state
from a 0-vacuum to an oo-vacuum is defined as

<V| 0| exp{ Z amn¢m+1/2¢n+1/2}

m,n>0

Ward identity and the information of free fermion insertions
determine an,.
@ The topological vertex is

Cow = (VN0 @@ @[v)e)
where )\, i, v are states of 2D Young diagrams.
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C3 mirror curve description

Let (x, p) denote (u, v) or (v, w) or (w, u) on each patch
respectively. And on each patch in the asympototical and core
region the curve is given by

(asym.) e *+e€°+1=0,
(core) e+€°+1=0.

Figure : Toric diagram for C® and 3 patches in the mirror curve
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@ Modular S and T transformation

0 1 11
S:(—1 o)> TZ(O 1)'
@ 73 symmetry
ST = ( o ) . (ST =1.
78 symmetry changes u—, v—, and w—patches

@ Symplectic structure
dx A dp is preserved by S and T transformation.
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Hamiltonian and D-brane probes
Let

zZ= eX, p= gsax = gsLOa
then Hamiltonian is defined according to the curve

Hy=e*+qgl -1, g=e%.

The D-brane probes correspond to fermions inserted on the
mirror curve. They satisfy the equation

(694 (z He<p w)) =

One solution gives rise to fermions’s position on the curve at

{Wi} = {17q_17q_27 e }
Similarly, the core geometry determines the position of fermions

at{w/} ={1,9.¢%---}.
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S-matrix and link

@ S transformation:
S: (va) - (p7 _X)
@ Vertex realization

ATTV-(@)Vila)lu)

p

= (-OgFqz () [[ V(@ )Vi(g7)0)

profile of A

mmmmmmmmmm
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T-matrix and cut-and-join

@ T transformation:
T:(u,v)—(Uu+wv,v)
@ Field realization:
p(u) = o(U) + gsOup(u)
@ T transformation forms a W3 symmetry

W5 = fauopPu)~ 5 X (P g5 ) (wti-vr ),

fEZ>o—%
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@ Result:

M)y = (g e 0 TT V@)@ "))

profile v

= 5.(0°) D sva(@"F)8um(@)
n

— R0 N, ).
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@ Result:

M)y = (g e 0 TT V@)@ "))

profile v

= 5.(0°) D sva(@"F)8um(@)
n
= q2C(u, M, v).

@ and a new 3-leg identity:

Avop) = g = (p A0
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@ Result:

) = (Mg T V@ )\Vila™)ln)

profile v
= 5.(0) D svn(@ )G )
n
= g/2C(u, N, v).
@ and a new 3-leg identity:

Rutry ; Reduce to Zhou’s
Ay = gz (u,\v) identity and have
= q 2z (v, \").  cyclic symmetry
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@ Future research
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Some projects

@ Refinement
@ Integrable systems
@ Wall-crossing
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@ More

22/26



3D Young diagram partition function

A statistical cubic crystal model, namely, 3D Young diagram has
partition function

> g™ =1+q+3¢°+6¢°+13¢" +- -

Back to

(KI<IIP > ] [l +]
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@ MacMahon function

o0

H(-]_qn H1_qltj1

@ Refined topological vertex and refined topological string

@ Refined Chern-Simons theory

@ Symmetric functions
Hall-Littlewood t — 0 goes to Schur
Macdonald g = t goes to Schur

@ Adding parameter to WZW
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Integrable systems

@ Method 1: Calogero-Sutherland (c.f. Jianfeng Wu & Ming
Yu)
Schematical way to write a Hamiltonian — bosonization and
fermionization — states which are Jack symmetric
functions.

@ Method 2: Jimbo-Miwa and the generalization
Phase model — L(\) matrix in quantum integrable model —

monodromy matrix
_ (A B
o= (50 o) )

— Hamiltonian of phase model and states B(x1) - - - B(x,)Q

¢ :B(x1) - B(Xp)Q2 — V_(x1)--- V_(xn)|0).
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Wall-crossing

@ Conifold

n=1 n=2
@ Kontsevich-Soibelman’s wall crossing formula

. e
T, =exp{— ) ﬁ
n=1
satisfies To1T10= T10T11701. Its quantum version
= exp{— Z n[n]

satisfies To1 T10= TioT11701.
Back to . 26/26
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