Finite-volume Hamiltonian for coupled channel interactions in lattice QCD

Jiajun Wu Theory Group, Physics Division Argonne National Laboratory

Collaborators: T.-S. Harry Lee, Ross D. Young, A. W. Thomas arXiv: 1402.4868

2014. 03.21 IHEP, Beijing

Outline

- Introduction
- Hamiltonian for $\pi\pi$ scattering
- Finite-box Hamiltonian method
- Applications to Lattice QCD
- Lattice spectra from the experiment data
- Summary and Outlook

Resonance Region

Resonance Region

Experiment Data (cross section)

Experiment Data (cross section)

- The limitation of Luscher method.
- One channel case:

one (E~L) \leftrightarrow one (E~ δ)

• Two channel case:

Three (E ~ L₁, L₂, L₃) \leftrightarrow Three (E~ δ_1 , δ_2 , η)

- The limitation of Luscher method.
- One channel case:

one (E~L) \leftrightarrow one (E~ δ)

• Two channel case:

Three (E ~ L₁, L₂, L₃) \leftrightarrow Three (E~ δ_1 , δ_2 , η)

- The limitation of Luscher method.
- One channel case:

one (E~L) \leftrightarrow one (E~ δ)

Two channel case:

Three (E ~ L₁, L₂, L₃) \leftrightarrow Three (E~ δ_1 , δ_2 , η)

Difficult !Lattice spectrumSeveral L \rightarrow Several E \overleftrightarrow Several E \overleftrightarrow Several L

Outline

- Introduction
- Hamiltonian for $\pi\pi$ scattering
- Finite-box Hamiltonian method
- Applications to Lattice QCD
- Lattice spectra from the experiment data
- Summary and Outlook

 $H = H_0 + H_I$

$$H_{0} = \sum_{i=1,n} \left| \sigma_{i} \right\rangle m_{i} \left\langle \sigma_{i} \right| + \sum_{\alpha} \left| \alpha(k_{\alpha}) \right\rangle \left[\sqrt{m_{\alpha 1}^{2} + k_{\alpha}^{2}} + \sqrt{m_{\alpha 2}^{2} + k_{\alpha}^{2}} \right] \left\langle \alpha(k_{\alpha}) \right|$$

 $|\sigma_i\rangle$ bare state with mass m_i

 $|\alpha(k_{\alpha})\rangle$ the channels such as $\pi\pi$, KK, ...

 $H = H_0 + H_I$

$$H_{0} = \sum_{i=1,n} \left| \sigma_{i} \right\rangle m_{i} \left\langle \sigma_{i} \right| + \sum_{\alpha} \left| \alpha(k_{\alpha}) \right\rangle \left[\sqrt{m_{\alpha 1}^{2} + k_{\alpha}^{2}} + \sqrt{m_{\alpha 2}^{2} + k_{\alpha}^{2}} \right] \left\langle \alpha(k_{\alpha}) \right|$$

 $|\sigma_i\rangle$ bare state with mass m_i

 $|\alpha(k_{\alpha})\rangle$ the channels such as $\pi\pi$, KK, ...

$$H_{I} = \hat{g} + \hat{v}$$
$$\hat{g} = \sum_{\alpha} \sum_{i=1,n} \left[\left| \alpha(k_{\alpha}) \right\rangle g_{i,\alpha}^{+} \left\langle \sigma_{i} \right| + \left| \sigma_{i} \right\rangle g_{i,\alpha} \left\langle \alpha(k_{\alpha}) \right| \right]$$

 $\hat{v} = \sum_{\alpha,\beta} \left| \alpha(k_{\alpha}) \right\rangle v_{\alpha,\beta} \left\langle \beta(k_{\beta}) \right|$

$$t_{\alpha,\beta}(k_{\alpha},k_{\beta},E) = V_{\alpha,\beta}(k_{\alpha},k_{\beta}) + \sum_{\gamma} \int k_{\gamma}^{2} dk_{\gamma} \frac{V_{\alpha,\gamma}(k_{\alpha},k_{\gamma})t_{\gamma,\beta}(k_{\gamma},k_{\beta},E)}{E - \sqrt{m_{\gamma1}^{2} + k_{\gamma}^{2}} - \sqrt{m_{\gamma1}^{2} + k_{\gamma}^{2}} + i\varepsilon}$$

$$t_{\alpha,\beta}(k_{\alpha},k_{\beta},E) = V_{\alpha,\beta}(k_{\alpha},k_{\beta}) + \sum_{\gamma} \int k_{\gamma}^{2} dk_{\gamma} \frac{V_{\alpha,\gamma}(k_{\alpha},k_{\gamma})t_{\gamma,\beta}(k_{\gamma},k_{\beta},E)}{E - \sqrt{m_{\gamma1}^{2} + k_{\gamma}^{2}} - \sqrt{m_{\gamma1}^{2} + k_{\gamma}^{2}} + i\varepsilon}$$

$$t_{\alpha,\beta}(k_{\alpha},k_{\beta},E) = V_{\alpha,\beta}(k_{\alpha},k_{\beta}) + \sum_{\gamma} \int k_{\gamma}^{2} dk_{\gamma} \frac{V_{\alpha,\gamma}(k_{\alpha},k_{\gamma})t_{\gamma,\beta}(k_{\gamma},k_{\beta},E)}{E - \sqrt{m_{\gamma1}^{2} + k_{\gamma}^{2}} - \sqrt{m_{\gamma1}^{2} + k_{\gamma}^{2}} + i\varepsilon}$$

$$t_{\alpha,\beta}(k_{\alpha},k_{\beta},E) = V_{\alpha,\beta}(k_{\alpha},k_{\beta}) + \sum_{\gamma} \int k_{\gamma}^{2} dk_{\gamma} \frac{V_{\alpha,\gamma}(k_{\alpha},k_{\gamma})t_{\gamma,\beta}(k_{\gamma},k_{\beta},E)}{E - \sqrt{m_{\gamma1}^{2} + k_{\gamma}^{2}} - \sqrt{m_{\gamma1}^{2} + k_{\gamma}^{2}} + i\varepsilon}$$

 $V_{\alpha,\beta}$

Observations & t martix

$$S_{\alpha,\beta} = 1 - i2\sqrt{\rho_{\alpha}}t_{\alpha,\beta}(k_{0\alpha}, k_{0\beta}, E)\sqrt{\rho_{\beta}}$$
$$\rho_{\alpha} = \frac{\pi k_{0\alpha}\sqrt{m_{\alpha1}^2 + k_{0\alpha}^2}\sqrt{m_{\alpha1}^2 + k_{0\alpha}^2}}{E}$$

$$\eta e^{2i\delta_{\alpha}} = S_{\alpha}$$

α

Observations & t martix

$$S_{\alpha,\beta} = 1 - i2\sqrt{\rho_{\alpha}}t_{\alpha,\beta}(k_{0\alpha}, k_{0\beta}, E)\sqrt{\rho_{\beta}}$$
$$\rho_{\alpha} = \frac{\pi k_{0\alpha}\sqrt{m_{\alpha1}^2 + k_{0\alpha}^2}\sqrt{m_{\alpha1}^2 + k_{0\alpha}^2}}{E}$$

$$\eta e^{2i\delta_{\alpha}} = S_{\alpha}$$

α

$$\sum_{\alpha_2}^{\alpha_1} \underbrace{\sigma_i}_{\beta_2}$$

$$g_{i,\alpha}^* \frac{1}{E-m_i} g_{i,\beta} \qquad \mathcal{V}_{\alpha},$$

$$\sum_{\alpha_2}^{\alpha_1} \sum_{\beta_2}^{\beta_1}$$

$$g_{i,\alpha}(k_{\alpha}) = \frac{\tilde{g}_{i,\alpha}}{\sqrt{\pi}} \frac{1}{\left(1 + \left(\boldsymbol{c}_{\alpha} k_{\alpha}\right)^{2}\right)}$$

$$v_{\alpha,\beta}$$

$$v_{\alpha,\beta}$$

$$v_{\alpha,\beta}(k_{\alpha},k_{\beta}) = \frac{G_{\alpha,\beta}}{m_{\pi}^2} \frac{1}{(1+(d_{\alpha}k_{\alpha})^2)^2} \frac{1}{(1+(d_{\beta}k_{\beta})^2)^2}$$

 $g_{i,\alpha}^* \frac{1}{E-m_i} g_{i,\beta}$

$$g_{i,\alpha}(k_{\alpha}) = \frac{\tilde{g}_{i,\alpha}}{\sqrt{\pi}} \frac{1}{\left(1 + \left(c_{\alpha}k_{\alpha}\right)^{2}\right)}$$

$$v_{\alpha,\beta}$$

$$v_{\alpha,\beta}(k_{\alpha},k_{\beta}) = \frac{G_{\alpha,\beta}}{m_{\pi}^{2}} \frac{1}{(1+(d_{\alpha}k_{\alpha})^{2})^{2}} \frac{1}{(1+(d_{\beta}k_{\beta})^{2})^{2}}$$

	1b-1c	1b-2c
$m_{\sigma}(\text{MeV})$	700.	700.00
$g_{\sigma\pi\pi}$	1.6380	2.0000
$c_{\sigma\pi\pi}(\mathrm{fm})$	1.0200	0.6722
$G_{\pi\pi, \pi\pi}$	0.5560	2.4998
$d_{\pi\pi}(\mathrm{fm})$	0.5140	0.2440
$g_{\sigma K \bar{K}}$	-	0.6451
$c_{\sigma K\bar{K}}(\mathrm{fm})$	-	1.0398
$G_{K\bar{K}, K\bar{K}}$	-	0.0200
$d_{K\bar{K}}(\mathrm{fm})$	-	0.1000
$G_{\pi\pi, K\bar{K}}$	-	0.3500

	1b-1c	1b-2c
$m_{\sigma}(\text{MeV})$	700.	700.00
$g_{\sigma\pi\pi}$	1.6380	2.0000
$c_{\sigma\pi\pi}(\mathrm{fm})$	1.0200	0.6722
$G_{\pi\pi,\pi\pi}$	0.5560	2.4998
$d_{\pi\pi}(\mathrm{fm})$	0.5140	0.2440
$g_{\sigma K\bar{K}}$	-	0.6451
$c_{\sigma K\bar{K}}(\mathrm{fm})$	-	1.0398
$G_{K\bar{K}, K\bar{K}}$	-	0.0200
$d_{K\bar{K}}(\mathrm{fm})$	-	0.1000
$G_{\pi\pi, K\bar{K}}$	-	0.3500

One channel case (1b-1c): only $\pi\pi$, fit up to 0.9 GeV Include 5 parameters

	1b-1c	1b-2c
$m_{\sigma}(\text{MeV})$	700.	700.00
$g_{\sigma\pi\pi}$	1.6380	2.0000
$c_{\sigma\pi\pi}(\mathrm{fm})$	1.0200	0.6722
$G_{\pi\pi,\pi\pi}$	0.5560	2.4998
$d_{\pi\pi}(\mathrm{fm})$	0.5140	0.2440
$g_{\sigma K\bar{K}}$	-	0.6451
$c_{\sigma K\bar{K}}(\mathrm{fm})$	-	1.0398
$G_{K\bar{K}, K\bar{K}}$	-	0.0200
$d_{K\bar{K}}(\mathrm{fm})$	-	0.1000
$G_{\pi\pi, K\bar{K}}$	-	0.3500

1b-1c

700.

1.6380

1.0200

0.5560

0.5140

 $m_{\sigma}(\text{MeV})$

 $g_{\sigma\pi\pi}$

 $c_{\sigma\pi\pi}(\mathrm{fm})$

 $G_{\pi\pi,\pi\pi}$

 $d_{\pi\pi}(\mathrm{fm})$

 $g_{\sigma K\bar{K}}$

1b-2c

700.00

2.0000

0.6722

2.4998

0.2440

0.6451

200

150

100

50

(degree)

Re $\delta_{_{m}}$

One channel case (1b-1c): only $\pi\pi$, fit up to 0.9 GeV Include 5 parameters

Outline

- Introduction
- Hamiltonian approach for $\pi\pi$ scattering
- Finite-box Hamiltonian method
- Applications to Lattice QCD
- Lattice spectra from the experiment data
- Summary and Outlook

$$H |\psi\rangle = E |\psi\rangle$$
$$Det[H_0 + H_I - EI] = 0$$

$$\vec{k} = \vec{n} \frac{2\pi}{L} \qquad \vec{n} \in \mathbb{Z}^3$$

 $H |\psi\rangle = E |\psi\rangle \qquad \begin{array}{c} \text{Eigenvalue} \\ \text{Energy} \\ \text{Det}[H_0 + H_I - E] = 0 \end{array}$

$$\vec{k} = \vec{n} \frac{2\pi}{L}$$
 $\vec{n} \in \mathbb{Z}^3$
Lattice Size

 $\vec{k} = \vec{n} \frac{2\pi}{L}$ $\vec{n} \in \mathbb{Z}^{3}$ Lattice Size

 $H |\psi\rangle = E |\psi\rangle \qquad \begin{array}{c} \text{Eigenvalue} \\ \text{Energy} \\ \text{Det}[H_0 + H_I - E] = 0 \end{array}$

One channel case (1b-1c):

$$g_{\pi\pi}^{fin}(k_{n}) = \sqrt{\frac{C_{3}(n)}{4\pi}} \left(\frac{2\pi}{L}\right)^{\frac{3}{2}} g_{\pi\pi}(k_{n})$$
$$v_{\pi\pi,\pi\pi}^{fin}(k_{n},k_{m}) = \sqrt{\frac{C_{3}(n)}{4\pi}} \sqrt{\frac{C_{3}(m)}{4\pi}} \left(\frac{2\pi}{L}\right)^{3} v_{\pi\pi,\pi\pi}(k_{n},k_{m})$$

 $\vec{k} = \vec{n} \frac{2\pi}{L}$ $\vec{n} \in \mathbb{Z}^{3}$ Lattice Size

 $H |\psi\rangle = E |\psi\rangle \qquad \begin{array}{c} \text{Eigenvalue} \\ \text{Energy} \\ \text{Det}[H_0 + H_I - E] = 0 \end{array}$

One channel case (1b-1c):

$$H_{0} = \begin{pmatrix} m_{1} & 0 & 0 & \cdots & \cdot & \cdot \\ 0 & 2\sqrt{k_{0}^{2} + m_{\pi}^{2}} & 0 & \cdots & \cdot & \cdot \\ 0 & 0 & 2\sqrt{k_{1}^{2} + m_{\pi}^{2}} & \cdots & \cdot & \cdot \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \ddots & \ddots & \ddots & \ddots & \vdots & \ddots & \vdots \end{pmatrix} H_{I} = \begin{pmatrix} 0 & g_{\pi\pi}^{fin}(k_{0}) & g_{\pi\pi}^{fin}(k_{1}) & \cdot & \cdot & \cdot \\ g_{\pi\pi}^{fin}(k_{0}) & v_{\pi\pi,\pi\pi}^{fin}(k_{0},k_{0}) & v_{\pi\pi,\pi\pi}^{fin}(k_{0},k_{1}) & \cdot & \cdot \\ g_{\pi\pi}^{fin}(k_{1}) & v_{\pi\pi,\pi\pi}^{fin}(k_{1},k_{0}) & v_{\pi\pi,\pi\pi}^{fin}(k_{1},k_{1}) & \cdot & \cdot \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ g_{\pi\pi}^{fin}(k_{n}) = \sqrt{\frac{C_{3}(n)}{4\pi}} \left(\frac{2\pi}{L}\right)^{\frac{3}{2}} g_{\pi\pi}(k_{n}) & C_{3}(n) & \text{The number of } \vec{n} \\ v_{\pi\pi,\pi\pi}^{fin}(k_{n},k_{m}) = \sqrt{\frac{C_{3}(n)}{4\pi}} \sqrt{\frac{C_{3}(m)}{4\pi}} \left(\frac{2\pi}{L}\right)^{\frac{3}{2}} v_{\pi\pi,\pi\pi}(k_{n},k_{m}) & C_{3}(1) = 6 \quad C_{3}(2) = 12 \quad C_{3}(3) = 8 \end{cases}$$

Finite-box Hamiltonian method 1b-1c: $Det[H_0 + H_1 - EI]=0$

Spectrum from the Hamiltonian

Finite-box Hamiltonian method 1b-1c: $Det[H_0 + H_1 - EI]=0$

Spectrum from the Hamiltonian

Phase shift from the Hamiltonian

Finite-box Hamiltonian method 1b-1c: $Det[H_0 + H_1 - EI]=0$

Spectrum from the Hamiltonian

Phase shift from the Hamiltonian

CONSISTENT OR NOT ??

Finite-box Hamiltonian method 1b-2c: $Det[H_0 + H_1 - EI] = 0$ 0 m_1 0 0 0 $2\sqrt{k_0^2+m_{\pi}^2}$ 0 0 0 0 $2\sqrt{k_0^2} + m_K^2 \qquad 0$ 0 0 0 • • • $H_0 =$ $2\sqrt{k_{1}^{2}+m_{\pi}^{2}}$ 0 0 0 0 $2\sqrt{k_1^2+m_K^2}$ 0 0 0 0 $g_{KK}^{fin}(k_0) \qquad g_{\pi\pi}^{fin}(k_1)$ $g_{\pi\pi}^{fin}(k_0)$ $g_{KK}^{fin}(k_1)$ 0 $v_{\pi\pi,\pi\pi}^{fin}(k_0,k_1) = v_{\pi\pi,KK}^{fin}(k_0,k_1)$ $g_{\pi\pi}^{fin}(k_0)$ $v_{\pi\pi,\pi\pi}^{fin}(k_0,k_0) = v_{\pi\pi,KK}^{fin}(k_0,k_0)$ • • • $g_{KK}^{fin}(k_0) v_{KK,\pi\pi}^{fin}(k_0,k_0) v_{KK,KK}^{fin}(k_0,k_0)$ $v_{KK,\pi\pi}^{fin}(k_0,k_1) \quad v_{KK,KK}^{fin}(k_0,k_1)$ • • • $H_I =$ $g_{\pi\pi}^{fin}(k_1) = v_{\pi\pi,\pi\pi}^{fin}(k_1,k_0) = v_{\pi\pi,KK}^{fin}(k_1,k_0) = v_{\pi\pi,\pi\pi}^{fin}(k_1,k_1) = v_{\pi\pi,KK}^{fin}(k_1,k_1)$ • • • $g_{KK}^{fin}(k_1)$ $v_{KK,\pi\pi}^{fin}(k_1,k_0) \quad v_{KK,KK}^{fin}(k_1,k_0)$ $v_{KK,\pi\pi}^{fin}(k_0,k_1) \quad v_{KK,KK}^{fin}(k_0,k_1)$ • • •

1b-2c:

Det $[H_0 + H_I - E I] = 0$

L₁, L₂, L₃ — E $\int \int \delta_{\pi\pi}(E), \ \delta_{K\overline{K}}(E), \ \eta(E)$

$$L) = \tan^{-1}\left(\frac{q_{\alpha}\pi^{3/2}}{Z_{00}(1,q_{\alpha}^{2})}\right)$$

1 channel and 2 channel

Finite-box Hamiltonian method → Spectrum (L~E)

Hamiltonian \rightarrow t matrix \rightarrow observations $(\delta_1, \delta_2, \eta)$

1 channel and 2 channel

Finite-box Hamiltonian method → Spectrum (L~E)

Luscher Method

One channel

 $\delta(k) = -\phi(q) \operatorname{mod} \pi$

$$-\phi(q) = \tan^{-1}\left(\frac{q\pi^{3/2}}{Z_{00}(1;q^2)}\right)$$

Two channels

$$0 = \cos\left(\Delta_{\pi\pi}(L) + \Delta_{K\bar{K}}(L) - \delta_{\pi\pi}(E) - \delta_{K\bar{K}}(E)\right) - \eta \cos\left(\Delta_{\pi\pi}(L) - \Delta_{K\bar{K}}(L) - \delta_{\pi\pi}(E) + \delta_{K\bar{K}}(E)\right)$$

Hamiltonian \rightarrow t matrix \rightarrow observations $(\delta_1, \delta_2, \eta)$

1 channel and 2 channel

Finite-box Hamiltonian method Spectrum (L~E)

Luscher Method

One channel

 $\delta(k) = -\phi(q) \mod \pi$

$$-\phi(q) = \tan^{-1}\left(\frac{q\pi^{3/2}}{Z_{00}(1;q^2)}\right)$$

 \rightarrow

- 1. Our approach is correct !
- 1 channel and 2 channel is 2. almost the same

Two channels

$$0 = \cos\left(\Delta_{\pi\pi}(L) + \Delta_{K\overline{K}}(L) - \delta_{\pi\pi}(E) - \delta_{K\overline{K}}(E)\right) - \eta \cos\left(\Delta_{\pi\pi}(L) - \Delta_{K\overline{K}}(L) - \delta_{\pi\pi}(E) + \delta_{K\overline{K}}(E)\right)$$

Hamiltonian \rightarrow t matrix \rightarrow observations $(\delta_1, \delta_2, \eta)$

Outline

- Introduction
- Hamiltonian for $\pi\pi$ scattering
- Finite-box Hamiltonian method
- Applications to Lattice QCD
- Lattice spectra from the experiment data
- Summary and Outlook

If there are some Lattice data of spectrum, how can we change them to the observations?

By our method:FittingBy Luscher method:Solving Equation

Can (1 channel) or Can not (2 or multi-channel)

If there are some Lattice data of spectrum, how can we change them to the observations?

- By our method: Fitting
- By Luscher method: Solving Equation

Can (1 channel) or Can not (2 or multi-channel)

Fitting bring one problem: would the form of the "g" and "v" influence the last result or not ?

Check this problem: we will produce some Lattice spectrum data by the 1b-1c and 1b-2c models, then we will use different form of potential to fit these data, then using fitted parameters to compute the observations to check the dependence of the form of interaction.

A
$$g_{i,\alpha}(k_{\alpha}) = \frac{\tilde{g}_{i,\alpha}}{\sqrt{\pi}} \frac{1}{(1 + (c_{\alpha}k_{\alpha})^{2})}$$

 $v_{\alpha,\beta}(k_{\alpha},k_{\beta}) = \frac{G_{\alpha,\beta}}{m_{\pi}^{2}} \frac{1}{(1 + (d_{\alpha}k_{\alpha})^{2})^{2}} \frac{1}{(1 + (d_{\beta}k_{\beta})^{2})^{2}}$
B $g_{i,\alpha}(k_{\alpha}) = \frac{\tilde{g}_{i,\alpha}}{\sqrt{\pi}} \frac{1}{(1 + (c_{\alpha}k_{\alpha})^{2})^{2}}$
 $v_{\alpha,\beta}(k_{\alpha},k_{\beta}) = \frac{G_{\alpha,\beta}}{m_{\pi}^{2}} \frac{1}{(1 + (d_{\alpha}k_{\alpha})^{2})^{4}} \frac{1}{(1 + (d_{\beta}k_{\beta})^{2})^{4}}$
C $g_{i,\alpha}(k_{\alpha}) = \frac{\tilde{g}_{i,\alpha}}{\sqrt{\pi}} e^{-(c_{\alpha}k_{\alpha})^{2}}$
 $v_{\alpha,\beta}(k_{\alpha},k_{\beta}) = \frac{G_{\alpha,\beta}}{m_{\pi}^{2}} e^{-(d_{\alpha}k_{\alpha})^{2}} e^{-(d_{\beta}k_{\beta})^{2}}$

One channel case:

Two channels case:

FITTING

COMPUTING

Two channels case:

By 16 or 24 points on the two different L, Luscher method can tell us NOTHING, but our approach can give a good description of observations.

Summary

Fitting approach with our Hamiltonian method:

- 1. It is valid in the energy region where the spectrum data are fitted.
- 2. It is valid not only for one-channel case, but also for twochannels case, then we believe it would be also valid for multi-channel case.

3. It is independent of the form of the Hamiltonian.

Outline

- Introduction
- Hamiltonian for $\pi\pi$ scattering
- Finite-box Hamiltonian method
- Applications to Lattice QCD
- Lattice spectra from the experiment data
 Summary and Outlook

Lattice spectra from the experiment data

Spectra \rightarrow Observations \longrightarrow Observations \rightarrow Spectra

Lattice spectra from the experiment data

Spectra \rightarrow Observations \longrightarrow Observations \rightarrow Spectra

Outline

- Introduction
- Hamiltonian for $\pi\pi$ scattering
- Finite-box Hamiltonian method
- Applications to Lattice QCD
- Lattice spectra from the experiment data
- Summary and Outlook

Summary

- We apply the finite-volume Hamiltonian method to the $\pi\pi$ KK scattering.
- The finite-volume Hamiltonian method is as accurate as the approach based on Luscher method in both the one-channel and two-channel cases.
- The finite-box Hamiltonian method can give correct prediction of scattering observables in the energy region where the spectrum data are fitted, independent of the form of the Hamiltonian.
- In the two channel cases, this Hamiltonian method need much less LQCD efforts than Luscher method.

Outlook

- Our approach is only in the S-wave and Center Mass system (C. M.). It is the simplest system.
- P-wave → Consider the Spin and angular momentum interaction
- C. M. \rightarrow boost system
 - → High eigenvalue of energy
 - & Three body case
 - & Electromagnetic form factor

Thank you very much