Time-like pion form factor in lattice QCD

Xu Feng

Columbia University
March 24, 2014 @IHEP, CAS

What is time-like pion form factor

Time-like pion form factor: $F_{\pi}(s)$

- $\gamma^{*} \rightarrow J_{\mu} \rightarrow$ hadron , J_{μ} : hadronic vector current, $u, d, s \cdots$
- focus on isovector part $J_{\mu}=J_{\mu}^{u-d}$

hadrons

- below inelastic scattering threshold, hadrons $=\pi^{+} \pi^{-}$
- time-like pion form factor is defined by

$$
\begin{aligned}
\left.\langle 0| J_{\mu} \mid \pi\left(p_{1}\right) \pi\left(p_{2}\right) \text { in }\right\rangle & =-\left\langle\pi\left(p_{1}\right) \pi\left(p_{2}\right) \text { out }\right| J_{\mu}|0\rangle \\
& =\sqrt{2} i\left(p_{1}-p_{2}\right)_{\mu} F_{\pi}(s), \quad s=\left(p_{1}+p_{2}\right)^{2}
\end{aligned}
$$

- $F_{\pi}(s)$ describes E.M. structure of $\pi \rightarrow$ shows how pion different from a point-like particle
- cross section σ are measured in experiment

$$
\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}\right)=\sigma^{0}\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}\right)\left|F_{\pi}(s)\right|^{2}
$$

- σ^{0} : assuming $\pi^{ \pm}$is point-like, tree-level cross section

Property of $F_{\pi}(s)$

- $F_{\pi}(s)$ is analytical except for the brach cut $4 m_{\pi}^{2}<s<\infty$
- in the time-like region, $s>4 m_{\pi}^{2}, F_{\pi}(s+i \epsilon)$ is complex
- Watson's final-state theorem

$$
\operatorname{Arg}\left[F_{\pi}(s+i \epsilon)\right]=\delta_{1}^{1}(s), \quad 4 m_{\pi}^{2}<s<\Lambda_{\mathrm{in}}^{2}
$$

$\delta_{1}^{1}(s)$ is $I=1$ channel P -wave $\pi \pi$ scattering phase

- $\left|F_{\pi}(s)\right|$ measured directly from experiment

$$
\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}\right)=\sigma^{0}\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}\right)\left|F_{\pi}(s)\right|^{2}
$$

- in the space-like region, $s=q^{2}<0, F_{\pi}\left(q^{2}\right)$ is real

Experimental measurement of δ for $I=1$ channel

Experimental measurement of δ for $I=1$ channel

Why time-like pion form factor

Conventional pion form factor

- space-like pion form factor calculated by many groups
- correlation functions are the primary objects in Lattice QCD
- Euclidean time $t \rightarrow i t$, operator $O(t)=e^{H t} O(0) e^{-H t}$
- single pion correlation function: $\pi(t)=\sum_{\mathbf{x}} \bar{u} \gamma_{5} d(\mathbf{x}, t)$

$$
\left.C_{\pi}(t)=\langle 0| \pi^{\dagger}(t) \pi(0)|0\rangle=\sum_{n} e^{-E_{\pi}^{n} t}|\langle n| \pi| 0\right\rangle\left.\right|^{2}
$$

- large t, only ground state $|n\rangle=|\pi\rangle$ saturates
- 3-point function: $C_{\pi J \pi}\left(t_{1}, t_{J}, t_{2}\right)=\left\langle\pi\left(t_{1}\right) J_{\mu}\left(t_{J}\right) \pi\left(t_{2}\right)\right\rangle$

$$
C_{\pi J \pi}\left(t_{1}, t_{J}, t_{2}\right) \xrightarrow{t_{1} \gg t_{J} \gg t_{2}}\left\langle\pi\left(p_{1}\right)\right| J_{\mu}\left|\pi\left(p_{2}\right)\right\rangle \rightarrow F_{\pi}\left(q^{2}\right)
$$

- space-like form factor $q^{2}=\left(p_{1}-p_{2}\right)^{2}<0$

Technical difficulty in time-like form factor

- space-like form factor $\left\langle\pi\left(p_{1}\right)\right| J_{\mu}\left|\pi\left(p_{2}\right)\right\rangle \rightarrow F_{\pi}\left(q^{2}\right), q^{2}<0$
- indicates a process of $\pi^{+} \rightarrow \gamma^{*} \pi^{+}$
- time-like form factor $\left\langle\pi^{+}\left(p_{1}\right) \pi^{-}\left(p_{2}\right)\right| J_{\mu}|0\rangle \rightarrow F_{\pi}\left(q^{2}\right)$, $q^{2}>4 m_{\pi}^{2}$
- indicates a process of $\gamma^{*} \rightarrow \pi^{+} \pi^{-}$
- final state contains multi-hadrons
- Maiani-Testa no-go theorem [91]:
- LQCD can't explore time-like region involving multi-hadrons

Maiani-Testa no-go theorem

- lattice results \rightarrow physical ones, requiring lattice size $L \rightarrow \infty$
- for a large, quasi-infinite volume, $p_{1,2}= \pm 2 \pi / L \rightarrow 0$
- ground state dominance at large t leads to

$$
\left|\pi\left(\vec{p}_{1}\right) \pi\left(\vec{p}_{2}\right)\right\rangle \Rightarrow|\pi(\overrightarrow{0}) \pi(\overrightarrow{0})\rangle \Rightarrow F_{\pi}\left(s=4 m_{\pi}^{2}\right)
$$

- dense discrete energy level \rightarrow hard to extract excited state
- no information of $F_{\pi}(s)$ can be extracted above $s>4 m_{\pi}^{2}$
- conclusion
- we must work in the finite volume
- finite-size correction must be treated properly

Time-like pion form factor and its applications

- from time-like pion form factor to other observables
- $\gamma^{*} \rightarrow J_{\mu}^{u-d} \rightarrow \rho^{0} \rightarrow \pi^{+} \pi^{-},\langle\pi \pi| J_{\mu}^{u-d}|0\rangle \rightarrow F_{\pi}(s)$
- $\gamma^{*} \rightarrow J_{\mu}^{s} \rightarrow \phi \rightarrow K^{+} K^{-},\langle K K| J_{\mu}^{s}|0\rangle \rightarrow F_{K}(s)$
- pion scalar form factor $\sigma \rightarrow \pi \pi,\langle\pi \pi| \bar{\psi} \psi|0\rangle \rightarrow F_{\pi}^{s}(s)$
- $\tau \rightarrow K \pi \nu_{\tau}, W^{*} \rightarrow J_{\mu}^{s d} \rightarrow K^{*} \rightarrow K \pi,\langle K \pi| J_{\mu}^{s d}|0\rangle \rightarrow F_{K \pi}(s)$
- nucleon form factor, $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow p \bar{p},\langle p \bar{p}| J_{\mu}|0\rangle \rightarrow F_{p}(s)$
- ..
- most of the hadrons, $\rho, \phi, \sigma, K^{*}, \Delta, \cdots$, are resonances
- $F_{\pi}(s)$ pave the way towards the general cases for resonances \rightarrow multi-hadron

Muon g-2

- muon magnetic moment $\vec{\mu}$ is related to its spin \vec{S}

$$
\vec{\mu}=g_{\mu} \frac{e \hbar}{2 m_{\mu} c} \vec{S}
$$

- Dirac theory predicts

$$
g_{\mu}=2
$$

- relativistic quantum fluctuation $\Rightarrow g_{\mu}$ deviates from 2

$$
a_{\mu}=\left(g_{\mu}-2\right) / 2
$$

- a_{μ} extracted from vertex function $\langle\mu| j_{\text {em }}^{\mu}|\mu\rangle: a_{\mu}=F_{2}(0)$

Essentials of a_{μ}

- experiment at BNL [Muon g-2, PRD73:072003, 2006]

$$
a_{\mu}^{\mathrm{EX}}=11659208.9(6.3) \times 10^{-10}[0.54 \mathrm{ppm}]
$$

- Standard Model ($e^{+} e^{-}$-based) [Davier, arXiv:0908.4300]

$$
a_{\mu}^{\mathrm{SM}}=11659183.4(4.9) \times 10^{-10}[0.42 \mathrm{ppm}]
$$

- discrepancy between theory and experiment

$$
a_{\mu}^{\mathrm{EX}}-a_{\mu}^{\mathrm{SM}}=25.5(8.0) \times 10^{-10}[3.2 \sigma]
$$

could be a hint for new physics

- 60% of theory error from hadronic vacuum polarization

$a_{\mu}\left(\pi^{+} \pi^{-}\right)$

- optical theorem

- $q^{2}<\Lambda_{\mathrm{in}}^{2}: \quad \sigma_{\mathrm{tot}}^{\mathrm{had}}\left(q^{2}\right)$ is given by $F_{\pi}\left(q^{2}\right)$
- using $F_{\pi}(s)$ to determine the muon g-2

$$
a_{\mu}\left(\pi^{+} \pi^{-}\right)=1 / \pi \int_{4 m_{\pi}^{2}}^{\infty} d s w(s)\left|F_{\pi}(s)\right|^{2}
$$

where $w(s)$ is a known weight function

How to calculate time-like $F_{\pi}(s)$

$F_{\pi}(s)$: complex angle

- enclose $\pi \pi$ in a box with a size $L \sim$ a few fermi
- two-pion correlation function

$$
\left.C_{\pi \pi}(t)=\langle 0|(\pi \pi)^{\dagger}(t)(\pi \pi)(0)|0\rangle=\sum_{n} e^{-E_{\pi}^{n} t}|\langle\pi \pi, n| \pi \pi| 0\right\rangle\left.\right|^{2}
$$

- discrete $E_{\pi \pi}^{n}$ are what we extract from lattice calculation
- turn off the interactions, two pions are free

$$
E_{\pi \pi}^{\mathrm{free}}=\sqrt{m_{\pi}^{2}+\vec{p}_{1}^{2}}+\sqrt{m_{\pi}^{2}+\vec{p}_{2}^{2}}, \quad \vec{p}_{1,2}=\frac{2 \pi}{L} \vec{n}_{1,2}
$$

- difference $\triangle E=E_{\pi \pi}^{n}-E_{\pi \pi}^{\text {free }}$ arises from interactions $H_{\text {int }}$
- scattering phase δ is determined by the interactions $H_{\text {int }}$
- arising from same $H_{\text {int }}$, relation between $E_{\pi \pi}^{n}$ and δ exists?
- Lüscher established a formula to relate $E_{\pi \pi}$ to $\delta(s)$

$$
n \pi-\delta(k)=\phi(q), \quad n \in \mathbb{Z}, \quad q=\frac{k}{2 \pi / L}, \quad E_{\pi \pi}=2 \sqrt{m_{\pi}^{2}+k^{2}}
$$

$\phi(q)$ is a known function, irrelevant to interaction details

$F_{\pi}(s):$ modulus

- in the $I=1$ channel, J_{μ} has same quantum number as $\pi \pi$

$$
\left.\int_{V} d^{3} x\langle 0| J_{\mu}(x, t) J_{\mu}(0)|0\rangle_{V}=\sum_{n}\left|\langle\pi \pi, n| J_{\mu}\right| 0\right\rangle\left._{V}\right|^{2} e^{-E_{\pi \pi}^{n} t}
$$

- $\left.E_{\pi \pi} \&\left|\langle\pi \pi, n| J_{\mu}\right| 0\right\rangle\left._{V}\right|^{2}$: quantities calculated from LQCD
- $E_{\pi \pi}$ can be used to determine δ, the complex angle of $F_{\pi}(s)$
- question: how we relate $\left.\left|\langle\pi \pi, n| J_{\mu}\right| 0\right\rangle\left._{V}\right|^{2}$ to $\left|F_{\pi}(s)\right|^{2}$?
- recall Lüscher's formula

$$
\frac{\phi(q)+\delta(k)}{\pi}=n
$$

- $V \rightarrow \infty$, finite volume sums \rightarrow infinite volume integrals [Lin, Martinelli, Sachrajda, Testa, 2001]

$$
\sum_{n} \rightarrow \int d E \rho_{V}(E), \quad \rho_{V}(E)=\frac{d n}{d E}=\frac{q \phi^{\prime}(q)+k \delta^{\prime}(k)}{4 \pi k^{2}} E
$$

$\rho_{V}(E)$ can be viewed as the density of states at energy E

$F_{\pi}(s):$ modulus

- finite volume
$\left.\int_{V} d^{3} x\langle 0| J_{\mu}(x, t) J_{\mu}(0)|0\rangle_{V} \xrightarrow{V \rightarrow \infty} \int d E \rho_{V}(E)\left|\langle\pi \pi, E| J_{\mu}\right| 0\right\rangle\left. V\right|^{2} e^{-E t}$
- infinite volume: spectral representation for vector correlator

$$
\begin{aligned}
& C_{\infty}(t)=\int d^{3} x\langle 0| J_{\mu}(x, t) J_{\mu}(0)|0\rangle=\int_{2 m_{\pi}}^{\infty} d E f(E) e^{-E t} \\
& f(E)=\frac{1}{6 \pi^{2}} \frac{k^{3}}{E}\left|F_{\pi}(s)\right|^{2}, \quad s=E^{2}=4\left(m_{\pi}^{2}+k^{2}\right)
\end{aligned}
$$

- final relation

$$
\left.\left|F_{\pi}(s)\right|^{2}=\frac{3 \pi s}{2 k^{5}}\left(q \frac{\partial \phi(q)}{\partial q}+k \frac{\partial \delta(k)}{\partial k}\right)\left|\langle\pi \pi, E| J_{\mu}\right| 0\right\rangle\left._{V}\right|^{2}
$$

- result correct, but demonstration not very satisfactory
- equivalent integral does not mean equivalent integrand
- integral $\int_{2 m_{\pi}}^{\infty}$ runs over inelastic region
- indirect demonstration by introducing vector boson $W \rightarrow \pi \pi$ [Lellouch, Lüscher, 2000; Meyer, PRL 2011]
- direct demonstration, my work at Columbia with N. Christ

Play with the method

Lattice setup

- $N_{f}=2+1$ overlap fermion, from JLQCD collaboration
- $m_{\pi}=380$ and 290 MeV , both with a lattice size $L=2.6 \mathrm{fm}$
- vector current operator: $\bar{\psi}-\psi$ fields or $\pi^{+} \pi^{-}$meson pairs

$$
\begin{aligned}
J_{\vec{\mu}}(\vec{P}, t) & =\left(\bar{\psi}(\vec{\mu} \cdot \vec{\gamma}) \frac{\tau}{2} \psi\right)(\vec{P}, t) \\
(\pi \pi)(t) & =\frac{1}{2}\left(\pi^{+}\left(\vec{p}_{1}, t+1\right) \pi^{-}\left(\vec{p}_{2}, t-1\right)+\pi^{+}\left(\vec{p}_{1}, t-1\right) \pi^{-}\left(\vec{p}_{2}, t+1\right)\right) \\
& -\frac{1}{2}\left(\pi^{+}\left(\vec{p}_{2}, t+1\right) \pi^{-}\left(\vec{p}_{1}, t-1\right)+\pi^{+}\left(\vec{p}_{2}, t-1\right) \pi^{-}\left(\vec{p}_{1}, t+1\right)\right) \\
& \Rightarrow J_{\vec{\mu}}^{\pi \pi}(\vec{P}, t), \quad \vec{P}=\vec{p}_{1}+\vec{p}_{2}, \quad \vec{\mu}=\frac{\vec{p}_{1}-\vec{p}_{2}}{\left|\vec{p}_{1}-\vec{p}_{2}\right|}
\end{aligned}
$$

- under parity symmetry $\vec{p}_{1,2} \rightarrow \vec{p}_{2,1},(\pi \pi)(t) \rightarrow-(\pi \pi)(t)$
- under isopsin symmetry $\pi^{ \pm} \rightarrow \pi^{\mp},(\pi \pi)(t) \rightarrow-(\pi \pi)(t)$

Spatial momentum

- spatial momentum configurations

$\pi(1,0,0) \pi(-1,0,0)$	$J_{\vec{\mu}}(0,0,0)$	circle in the plot
$\pi(1,0,0) \pi(0,0,0)$	$J_{\vec{\mu}}(1,0,0)$	square
$\pi(1,1,0) \pi(0,0,0)$	$J_{\vec{\mu}}(1,1,0)$	diamond
$\pi(1,1,1) \pi(0,0,0)$	$J_{\vec{\mu}}(1,1,1)$	triangle up
$\pi(1,0,0) \pi(0,1,0)$	$J_{\vec{\mu}}(1,1,0)$	triangle left

- all-to-all propagagtor technique to construct the correlator

$$
\left\langle[(\pi \pi)(t)]^{\dagger}(\pi \pi)(0)\right\rangle,\left\langle[(\pi \pi)(t)]^{\dagger} J(0)\right\rangle,\left\langle[J(t)]^{\dagger}(\pi \pi)(0)\right\rangle,\left\langle[J(t)]^{\dagger} J(0)\right\rangle
$$

- variational method to calculate $\left.E_{\pi \pi} \&\left|\langle\pi \pi, E| J_{\mu}\right| 0\right\rangle\left._{V}\right|^{2}$ for lowest two states
- 5 moving frames $\times 2$ states $=10$ data points
- $\left.E_{\pi \pi} \rightarrow \delta_{1}^{1}, \quad\left|\langle\pi \pi, E| J_{\mu}\right| 0\right\rangle\left. v\right|^{2} \rightarrow\left|F_{\pi}(s)\right|^{2}$

Preliminary results

- $N_{f}=2+1$ overlap fermion, $m_{\pi}=380$ and 290 MeV ,
$L=2.6 \mathrm{fm}$

$$
\mathrm{m}_{\pi}=380 \mathrm{MeV} \quad \mathrm{~m}_{\pi}=290 \mathrm{MeV}
$$

Modeling the data

- $\gamma^{*} \rightarrow \pi \pi$: at low energies $\pi \pi$ scattering dominated by the production and decay of ρ-meson
- introducing ρ-meson prop. $i /\left(s-m_{\rho}^{2}\right)$, VMD form gives

$$
F_{\pi}(s)=A /\left(m_{\rho}^{2}-s\right), \quad A=m_{\rho}^{2}
$$

normalization $F_{\pi}(0)=1$ requested by charge conservation

- $\pi \pi$ branch cut effect, Gounaris and Sakurai [68] employ

$$
F_{\pi}(s)=A /\left(m_{\rho}^{2}-s-\Pi_{\rho}(s)\right), \quad A=m_{\rho}^{2}-\Pi_{\rho}(0)
$$

$\Pi_{\rho}(s): \rho$ self-energy produced by the two-pion loop

- near resonance energy, tree-level $\rho \rightarrow \pi \pi$ amplitude

$$
\left.\left\langle\pi\left(k_{1}\right) \pi\left(k_{2}\right), \text { out }\right| \rho\left(\varepsilon, k_{0}\right), \text { in }\right\rangle=g_{\rho \pi \pi} \varepsilon_{\mu} \cdot\left(k_{1}-k_{2}\right)^{\mu}
$$

- using optical theorem we have

$$
\operatorname{Im} \Pi_{\rho}(s)=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k^{3}}{\sqrt{s}}, \quad k=\sqrt{s / 4-m_{\pi}^{2}}
$$

- $\operatorname{Re} \Pi_{\rho}(s)$ is related to $\operatorname{Im} \Pi_{\rho}(s)$ by dispersion relation

Draw back of GS model

- GS model rely on two parameters: m_{ρ} and $g_{\rho \pi \pi}$

- GS model v.s. experimental data

Draw back of GS model

- GS model rely on two parameters: m_{ρ} and $g_{\rho \pi \pi}$

- GS model v.s. lattice data

Modification to GS model

- GS form gives too small value for $\left|F_{\pi}(s)\right|$ at $s \approx m_{\rho}^{2}$

$$
F_{\pi}(s)=A /\left(m_{\rho}^{2}-s-\Pi_{\rho}(s)\right), \quad A=m_{\rho}^{2}-\Pi_{\rho}(0)
$$

- extend GS form by including ρ (1450), $\rho(1700)$
- doubts: higer resonances really affect ρ so much
- GS fails at $s \approx m_{\rho}^{2}$, where $\gamma^{*} \rightarrow \rho \rightarrow \pi \pi$
- $\gamma^{*} \rightarrow \rho$ is related to $\rho \rightarrow \gamma^{*} \rightarrow I^{+} I^{-}, \Gamma\left(\rho \rightarrow I^{+} I^{-}\right) \rightarrow g_{v}$
- $\rho \rightarrow \pi \pi$ is related to $\Gamma(\rho \rightarrow \pi \pi) \rightarrow g_{\rho \pi \pi}$
- considering $\gamma^{*}-\rho$ mixing, near $s=m_{\rho}^{2}$, VMD gives

$$
F_{\pi}(s)=\frac{g_{\rho \pi \pi} g_{V} m_{\rho}^{2}}{m_{\rho}^{2}-s-\Pi_{\rho}(s)}, \quad F_{\pi}(0) \neq 0
$$

- introduce a s-dependent $A(s)=a_{0}+a_{1} s+a_{2} s^{2}+\cdots$

$$
\left.A(s)\right|_{s=0}=m_{\rho}^{2}-\Pi_{\rho}(0),\left.\quad A(s)\right|_{s=m_{\rho}^{2}}=g_{\rho \pi \pi} g_{V} m_{\rho}^{2}
$$

Fit the lattice data

- $A(s)=a_{0}+a_{1} s+a_{2} s^{2}$: fit looks fine

- through the fit, we determine $m_{\rho}, g_{\rho \pi \pi}, g_{V}$

	Lattice		Experiment
m_{π}	380 MeV	290 MeV	140 MeV
m_{ρ}	$875(7) \mathrm{MeV}$	$819(14) \mathrm{MeV}$	775 MeV
$g_{\rho \pi \pi}$	$5.88(19)$	$5.85(24)$	5.98
g_{V}	$0.204(7)$	$0.203(9)$	0.202

- first lattice calculation on time-like $F_{\pi}(s)$
- $g_{\rho \pi \pi}$ shows a mild pion mass dependence, consistent with previous studies from ETMC and PACS-CS
- new way to determine g_{V}, finite-size effect considered
- future direction:
- move to physical pion mass
- other applications

