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Entanglement entropy

Divide the system to be A and B such that Htot = HA ⊗HB

Reduced density matrix: ρA = trBρtot
von Neumann Entanglement entropy: SA = −trρA ln ρA
It is the entropy for an observer who is only accessible to A
and not to B
Properties:

1 For pure state SA = SB , otherwise SA 6= SB
2 Strong subadditivity: SA+B+C + SB ≤ SA+B + SB+C

3 Subadditivity: SA+B ≤ SA + SB
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Physical implication

It is hard to be observed directly in Lab.

It has been computed numerically in CM systems: spin chains,
lattice models, ...

Encodes valuable information of the system: dynamical d.o.f.

Various applications: as quantum order parameter in CM,
characterize non-equilibrium states,...

A bridge between gravity and CM
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Rényi entropy

More generally one can define the Rényi entanglement
entropy, or in short the Rényi entropy, of A and B as

S
(n)
A = − 1

n − 1
logTrAρ

n
A. (1.1)

It is easy to see that the entanglement entropy and the Rényi
entropy are related by

SA = lim
n→1

S
(n)
A . (1.2)

The relation provides a practical way to compute EE
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Rényi mutual information

Choose two subsystems A and B which are not necessarily
each other’s complement

Define the Rényi mutual information of A and B

I
(n)
A,B = S

(n)
A + S

(n)
B − S

(n)
A∪B . (1.3)

Free from UV and IR divergences

For n = 1, it is called mutual information, which measures an
entropic correlation between A and B

From subadditivity, we know I (A,B) ≥ 0
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EE in QFT

Consider a QFT on a (d + 1)-dim. manifold R ×M, where R
is time direction
Choose subsystem by a d-dim. submanifold A ∈ M at a fixed
time
In this case, the EE SA is called the geometric entropy as it
depends on the geometry of AL.Bombelli et.al. 1986, M. Srednicki 9304048

SA = γ
Area(∂A)

εd−1
+ subleading terms (1.4)

where ∂A is the boundary of A, ε is the UV cutoff and γ is a
constant depending on the system
This suggests that entanglement between A and B occurs at
the boundary most strongly
The Rényi entropy could be defined similarly
In a sense, the entanglement entropy is a generalization of
”Wilson loop”
It is really hard to compute in QFT, even for free field theory
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Exception: 2D CFT

For A being a single interval of length lC. Holzhey et.al. 9403108

SA =
c

3
log

l

ε
(1.5)

where c is the central charge

The situations of a compactified circle or an infinite system at
finite temperature could be treated by using the conformal
map

Rényi entropyP. Calabrese and J.L. Cardy 0405152

Sn =
c

6

(
1 +

1

n

)
log

`

ε
, (1.6)
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AdS/CFT correspondence

Quantum gravity in AdS spacetime is dual to a CFT at AdS
boundaryJ. Maldacena 1997

A concrete realization of holographic principle
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Holographic entanglement entropyRyu and Takayanagi 2006

AdS/CFT: A field theory could be holographically described
by a higher-dim. gravity
Ryu and Takayanagi(2006)µFind a codimension two minimal
surface ΣA in the bulk that is homogeneous to A
The entanglement entropy (for Einstein gravity)

SA =
Area(ΣA)

4GN
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Remarks on HEE

RT formula has passed some nontrivial tests
1 Satisfies strong subadditivity
2 Reproduce one interval EE in 2D CFT

It has been intensely studied since its proposal

In higher dimension (d ≥ 3), it has been shown recently by A.
Lewkowyca and J. Maldacena (1304.4926) (see also D.V.
Fursaev (0606184) and H. Casini et.al. (1102.0440)) but the
proof has not been well-accepted

In 2 + 1 dimension, RT formula has been proven recently by
T. Hartman (1303.6955) and T. Faulkner (1303.7221)
independently
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Replica trick

The standard way is to use replica trickJ. Callan et.al. 9401072

Here, we only focus on the 2D CFT, which provides more
analytic results
In Euclidean path-integral, the ground state wave-functional is
represented byT. Takayanagi’s lecture in 7th Asian winter school

Figure: cf. T. TakayanagiBin Chen, PKU On short interval expansion of Rényi entropy
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Replica trick II

Bin Chen, PKU On short interval expansion of Rényi entropy
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Replica trick III

Replica trick: computation in product orbifold (CFT)n/Zn

Branch points: twist operators with dimension

h = h̄ =
c

24

(
n − 1

n

)
. (2.1)

One interval case

TrρnA = 〈σ(`, `)σ̃(0, 0)〉C = cn`
− c

6 (n− 1
n ), (2.2)

from which the Rényi entropy for one interval could be readP.

Calabrese and J.L. Cardy 0405152

Sn =
c

6

(
1 +

1

n

)
log

`

ε
, (2.3)
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Multi-intervals

In the case of N intervals, there are more branch cuts so that
the Riemann surface is of genus (n − 1)(N − 1), where n is
the number of replica

If we have multiple intervals A = [z1, z2] ∪ · · · ∪ [z2N−1, z2N ],

TrρnA = 〈σ(z2N , z̄2N)σ̃(z2N−1, z̄2N−1) · · ·σ(z2, z̄2)σ̃(z1, z̄1)〉C .

It is very difficult to compute

Nevertheless, in the case that the intervals are short, we may
use operator product expansion(OPE) to compute
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Proof of RT formula in AdS3: A sketchT. Faulkner 1303.7221

Find the bulk gravity solutions Bγ such that ∂Bγ = Σn

Key point: all solutions of AdS3 gravity

Bγ = H3/Γγ

where Γγ is the subgroup of isometry SL(2,C )

In the classical gravity limit, keep only the solution of least
action

Consider the handlebody solutions, preserving the boundary
replica symmetry

This requires that Γγ is the schottky group

Monodromies of the cycel gives the quotient

The conformal Ward identity gives the bulk action

An independent proof by T. Hartman (1303.6955) used the
CFT techniques
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Quantum correction

For large separation, the mutual information is vanishing

The mutual information satisfies M. Wolf et.al. 0704.3906

I (A,B) ≥ | < OA · OB > − < OA >< OB > |2

2|OA|2|OB |2
(2.4)

I (A,B) is only vanishing to the leading order in GN

It should be nonzero, with quantum correctionsT. Faulkner et.al. 1307.2892

With the bulk solution, the 1-loop quantum correction to Rényi
entropy has been computedT. Barrella et.al. 1306.4682
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Question

Can one find the 1-loop quantum correction from CFT side?

In principle, this is feasible

Recall that in AdS3/CFT2, c = 3l
2G

In the large c limit, we may recover the weak gravity result,
even with quantum correction

In practice, as the EE is nonlocal, we only manage to compute
the Rényi entropies in the small interval limit, which allows us
to use OPE techniques

The results are really remarkable
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Correlators in 2D CFT

In a 2D CFT, all the operators could be written in terms of
quasiprimary fields and their derivatives

We write the quasiprimary operators as φi with conformal
weights hi and h̄i

The correlation functions of two and three quasiprimary
operators on complex plane C are

〈φi (zi , z̄i )φj(zj , z̄j)〉C =
αiδij

z2hi
ij z̄2h̄i

ij

,

〈φi (zi , z̄i )φj(zj , z̄j)φk(zk , z̄k〉C

=
Cijk

z
hi+hj−hk
ij z

hj+hk−hi
jk z

hi+hk−hj
ik z̄

h̄i+h̄j−h̄k
ij z̄

h̄j+h̄k−h̄i
jk z̄

h̄i+h̄k−h̄j
ik

,

with zij ≡ zi − zj and z̄ij ≡ z̄i − z̄j .
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OPE in 2D CFT

The OPE of two quasiprimary operators could be generally written
as

φi (z , z̄)φj(0, 0) =
∑
k

C k
ij

∑
m,r≥0

amijk
m!

ārijk
r !

1

zhi+hj−hk−mz̄ h̄i+h̄j−h̄k−r
∂m∂̄rφk(0, 0),

where the summation k is over all quasiprimary operators and
there are definitions

amijk ≡
Cm
hk+hi−hj+m−1

Cm
2hk+m−1

, ārijk ≡
C r
h̄k+h̄i−h̄j+r−1

C r
2h̄k+r−1

, C k
ij ≡

Cijk

αk

with the binomial coefficient being C y
x = Γ(x+1)

Γ(y+1)Γ(x−y+1) .

Bin Chen, PKU On short interval expansion of Rényi entropy
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CFTn

The replica trick requires us to study a orbifold CFT:
(CFT)n/Zn

The CFTn has central charge nc with c being the central
charge of CFT1, and the stress tensors are

n−1∑
j=0

T (zj),
n−1∑
j=0

T̄ (z̄j) (3.1)

where T (zj), T̄ (z̄j) are the stress tensors of the j-th copy the
original CFT and zj is the coordinate of the j-th copy of the
Riemann surface Rn,N .
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Quasiprimaries in CFTn

We denote the linear independent quasiprimary operators of CFTn

as ΦK (z , z̄) with conformal wights hK and h̄K . The product of
quasiprimary operators in each copy forms a quasiprimary operator
of CFTn,

ΦK (z , z̄) =
n−1∏
j=0

φkj (zj , z̄j), (3.2)

and in this case there are

K = {kj}, αK =
n−1∏
j=0

αkj , hK =
n−1∑
j=0

hkj , h̄K =
n−1∑
j=0

h̄kj . (3.3)

Note that not all of the quasiprimary operators of CFTn could be
written in the above form.
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General prescriptionM. Headrick 1006.0047, P. Calabrese et.al. 1011.5482,

BC and J-j Zhang 1309.5453

When the intervals are short, we have the OPE of the twist operators

σ(z , z̄)σ̃(0, 0) = cn
∑
K

dK
∑

m,r≥0

amK
m!

ārK
r !

1

z2h−hK−mz̄2h̄−h̄K−r
∂m∂̄rΦK (0, 0),

(3.4)
with the summation K being over all the independent quasiprimary
operators of CFTn. Here

amK ≡
Cm
hK +m−1

Cm
2hK +m−1

, ārK ≡
C r
h̄K +r−1

C r
2h̄K +r−1

. (3.5)

For a quasiprimary operator ΦK , the OPE coefficient is

CK = cn`
− c

6 (n− 1
n )dK , (3.6)

The OPE coefficient of its derivatives ∂m∂̄rΦK is

C
(m,r)
K = cn`

− c
6 (n− 1

n )+m+rdK
amK
m!

ārK
r !
. (3.7)
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Remarks

For a concrete CFT model, the summation should be over all
the conformal blocks

For pure AdS3 gravity, it is enough to consider the vacuum
Verma module

The OPE of the twist operators could be represented by a
diagram

. . .

Figure: OPE vertex of twist operators
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How to compute the OPE coefficients

For usual OPE, it depends on the three point functions
For the OPE of twist operators, we may just focus on the one
interval case, in the small interval limitP. Calabrese et.al. 1011.5482

When there is one interval A = [0, `], we consider the
expectation value of one quasiprimary operator ΦK (z , z̄) on
Rn,1, and then we have

Zn(A)

Zn
〈ΦK (z , z̄)〉Rn,1 = 〈ΦK (z , z̄)σ(`, `)σ̃(0, 0)〉C . (3.8)

Using the OPE of twist operators and the orthogonality of
quasiprimary operators of CFTn we have

dK =
1

αK `hK+h̄K
lim
z→∞

z2hK z̄2h̄K 〈ΦK (z , z̄)〉Rn,1 , (3.9)

with αK being a normalization coefficient.
The key ingredients in the OPE of twist operators is to
calculate the coefficients αK and dK .
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Holomorphic quasiprimary operators in CFT1

Explicitly the holomorphic quasiprimary operators of first few levels
are listed as follows.

At level 0, it is the identity operator 1.

At level 2, there is one quasiprimary operator the stress tensor
T .

At level 4, it is O = (TT )− 3
10∂

2T .

At level 6, they are Q = (∂T∂T )− 2
9∂

2(TT ) + 1
42∂

4T and

R = P + 9(14c+43)
2(70c+29)Q, with

P = (T (TT ))− 1
4∂

2(TT ) + 1
56∂

4T .

We use the notation (AB)(z) representing the normal ordering of
two operators A(z) and B(z). Note that at level 6, P(z) and Q(z)
are not orthogonal. After using the Gram-Schmidt
orthogonalization process, we get the orthogonalized operators
Q(z) and R(z).
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Normalization factor αk

Firstly one define the state |k〉 ≡ φk(0, 0)|0〉, with |0〉 being the
vacuum state of the CFT on C , and then

αk = 〈k |k〉. (4.1)

For example, for the operator O(z) we have

|O〉 =

(
L−2L−2 −

3

5
L−4

)
|0〉, (4.2)

and then

αO =
c(5c + 22)

10
. (4.3)

Similarly, for other quasiprimary operators, their normalization
factors are respectively

α1 = 1, αT =
c

2
, αQ =

4c(70c + 29)

63
,

αR =
3c(2c − 1)(5c + 22)(7c + 68)

4(70c + 29)
. (4.4)
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Quasiprimaries in CFT1

There are also the antiholomorphic quasiprimary operators T̄ , Ō,
Q̄ and R̄, as well as the quasiprimary operators with mixing
holomorphic and antiholomorphic parts. Explicitly, at each level
L0 + L̄0, we have

At level 0, it is 1.

At level 2, they are T and T̄ .

At level 4, they are O, Ō and TT̄ .

At level 6, they are Q, R, Q̄, R̄, T Ō and T̄O.

Note that here the quasiprimary operators are just trivial
multiplications of the holomorphic and antiholomorphic parts,
because that the OPE of T and T̄ has no singular terms.
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Quasiprimaries in CFTn

The quasiprimary operators are listed as below.

L0 quasiprimary operators degeneracies #

0 1 1 1

2 T (zj) n n

4 T (zj1)T (zj2) with j1 < j2
n(n−1)

2
n(n+1)

2
O(zj) n

5 Sj1j2(z) with j1 < j2
n(n−1)

2
n(n−1)

2

T (zj1)T (zj2)T (zj3) with j1 < j2 < j3
n(n−1)(n−2)

6
T (zj1)O(zj2) with j1 6= j2 n(n − 1)

6 Uj1j2(z) with j1 < j2
n(n−1)

2
n(n+1)(n+5)

6
Q(zj) n
R(zj) n

· · · · · · · · · · · ·
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Note that the j ’s listed above vary as 0 ≤ j ≤ n − 1, and also the
operators

Sj1j2(z) = T (zj1)i∂T (zj2)− i∂T (zj1)T (zj2),

Uj1j2(z) =
5

9
∂T (zj1)∂T (zj2)− 2

9
∂2T (zj1)T (zj2)− 2

9
T (zj1)∂2T (zj2)

can not be factorized into the operators at different copies.
The coefficients αK for these operators could be calculated easily

αTT =
c2

4
, αS = 2c2, αTTT =

c3

8
,

αTO =
c2(5c + 22)

20
, αU =

20c2

9
. (4.5)
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The coefficient dK

To compute dK we consider the multivalued transformation

z → f (z) =

(
z − `
z

)1/n

, (4.6)

which maps the Riemann surface Rn,1 to the complex plane C . With
some efforts, we can get dK for various operators listed above,

d1 = 1, dT =
n2 − 1

12n2
, d j1j2

TT =
1

8n4c

1

s4
j1j2

+
(n2 − 1)2

144n2
,

dO =
(n2 − 1)2

288n4
, d j1j2

S =
1

16n5c

cj1j2
s5
j1j2

,

d j1j2j3
TTT = − 1

8n6c2

1

s2
j1j2

s2
j2j3

s2
j1j3

+
n2 − 1

96n6c

(
1

s4
j1j2

+
1

s4
j2j3

+
1

s4
j1j3

)
+

(n2 − 1)3

1728n6
,

d j1j2
TO =

n2 − 1

96n6c

1

s4
j1j2

+
(n2 − 1)3

3456n6
, dQ = −

(n2 − 1)2
(
2(35c + 61)n2 − 93

)
5760n6(70c + 29)

,

Here sj1j2 ≡ sin π(j1−j2)
n and cj1j2 ≡ cos π(j1−j2)

n .
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Application I: one short interval on cylinder

We choose the coordinate of the cylinder be z and the
subsystem A to be an interval A = [0, `] with `� L.

The Rényi entanglement entropy of A is known exactly P.

Calabrese and J. Cardy 0405152

Sn =
c

6

(
1 +

1

n

)
log

(
L

πε
sin

π`

L

)
. (5.1)

From OPE of twist operators

TrρnA = 〈σ(`, `)σ̃(0, 0)〉L = cn`
− c

6 (n− 1
n )
∑
K

dK `
hK+h̄K 〈ΦK (0, 0)〉L,

Due to the translational invariance, the expectation value of
one operator on the cylinder 〈ΦK (z , z̄)〉L must be independent
of the coordinates, and so the derivative terms vanish
uniformly.
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Finite size correction

The holo. and anti-holo. sectors are decoupled, the
computation could be simplified more

TrρnA = cn`
− c

6 (n− 1
n )

(∑
K

dK `
hK 〈ΦK (0)〉L

)2

,

with K being the summation over all the linear independent
holomorphic quasiprimary operators.

In the end, we could find the Rényi entanglement entropy

Sn = − 1

n − 1
logTrρnA

=
c

6

(
1 +

1

n

)(
log

`

ε
− π2`2

6L2
− π4`4

180L4
− π6`6

2835L6
+ O

(
`

L

)8
)
,

which matches (5.1) to the order of O(`6).
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Application II: Two intervals with small cross ratio

TrρnA = c2
ny
− c

3 (n− 1
n )

(∑
K

αKd
2
Ky

2hK

∑
m,p≥0

(−)m
(m + p)!

m!p!
amK a

p
KC

m+p
2hK+m+p−1y

m+p

2

,

with y2 = x .

With the coefficients dK obtained before, the computation is
straightforward but tedious
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Rényi mutual information

The Rényi mutual information is

In =
c

3
(1 +

1

n
) log

y

ε
+

1

n − 1
logTrρnA,

= I treen + I 1−loop
n + I 2−loop

n + · · · . (5.2)

Here we have classified the contributions according to the
order of the inverse of central charge 1

c , which in the large c
limit corresponds to tree, 1-loop, and 2-loop contributions in
the gravity side

After some highly nontrivial summation...
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Useful formulae I

Define

fm(n) =
n−1∑
j=1

1(
sin πj

n

)2m
,

we need

f1(n) =
n2 − 1

3
, f2(n) =

(n2 − 1)
(
n2 + 11

)
45

,

f3(n) =
(n2 − 1)

(
2n4 + 23n2 + 191

)
945

,

f4(n) =
(n2 − 1)

(
n2 + 11

) (
3n4 + 10n2 + 227

)
14175

,

f5(n) =
(n2 − 1)

(
2n8 + 35n6 + 321n4 + 2125n2 + 14797

)
93555

,∑
0≤j1<j2<j3≤n−1

1

s2
j1j2

s2
j2j3

s2
j1j3

=
n
(
n2 − 1

) (
n2 − 4

) (
n2 + 47

)
2835

,
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Useful formulae II

∑
0≤j1<j2<j3≤n−1

1

s4
j1j2

s4
j2j3

s4
j1j3

=
n
(
n2 − 1

) (
n2 − 4

)
273648375

×

(
19n8 + 875n6 + 22317n4 + 505625n2 + 5691964

)
∑

0≤j1<j2<j3≤n−1

(
1

s4
j1j2

+
1

s4
j2j3

+
1

s4
j1j3

)
=

n(n2 − 1)(n − 2)
(
n2 + 11

)
90

,

∑
0≤j1<j2<j3≤n−1

(
1

s4
j1j2

+
1

s4
j2j3

+
1

s4
j1j3

)2

=
n(n2 − 1)(n − 2)

(
n2 + 11

)
28350

×

(
3n4 + 8n3 + 26n2 + 152n + 531

)
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Mutual information: classical part

The tree part, or the so-called classical part, being proportional to
the central charge c , is

I treen =
c(n − 1)(n + 1)2x2

144n3
+

c(n − 1)(n + 1)2x3

144n3

+
c(n − 1)(n + 1)2

(
1309n4 − 2n2 − 11

)
x4

207360n7

+
c(n − 1)(n + 1)2

(
589n4 − 2n2 − 11

)
x5

103680n7

+
c(n − 1)(n + 1)2

156764160n11
·

·
(
805139n8 − 4244n6 − 23397n4 − 86n2 + 188

)
x6 + O

(
x7
)

This matches the result in M. Headrick 1006.0047, T. Hartman
1303.6955, T. Faulkner 1303.7221.

Bin Chen, PKU On short interval expansion of Rényi entropy
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Mutual information: 1-loop correction

The quantum 1-1oop part, being proportional to c0, is

I 1−loop
n =

(n + 1)
(
n2 + 11

) (
3n4 + 10n2 + 227

)
x4

3628800n7

+
(n + 1)

(
109n8 + 1495n6 + 11307n4 + 81905n2 − 8416

)
x5

59875200n9

+
(n + 1)

(
1444050n10 + 19112974n8 + 140565305n6 + 1000527837n4 − 167731255n2 − 14142911

)
x6

523069747200n11

+ O
(
x7
)
, (5.3)

and this matches the result in M. Headrick 1006.0047, T. Barrella
1306.4682.
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Mutual information: 2-loop correction

Remarkably there is also the quantum 2-loop contribution, being
proportional to 1/c ,

I 2−loop
n =

(n + 1)
(
n2 − 4

)
x6

70053984000n11c
·
(
19n8 + 875n6 + 22317n4 + 505625n2 + 5691964

)
+O

(
x7
)
,

This is novel, expected to be the quantum 2-loop contribution in
gravity.
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Conclusion

Rényi entropy and its 1-loop quantum correction in the AdS3

gravity sheds new light on the AdS3/CFT2 correspondence

We developed the short interval expansion of twist operators
by considering the derivatives of the quasiprimary operators

This allowed us to get the subleading contributions of Rényi
entropy

To order 6 in the short interval expansion, we reproduced
exactly the classical and 1-loop quantum contributions to the
Rényi entropy

Strong support of holographic computation of EE and RE
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Discussion

Rényi entropy opens a new window to study the AdS3/CFT2

correspondence

In the case of two disjoint intervals, the Rényi entropy S2 is
just the partition function on a torus with a modular
parameter. This partition function corresponds to the 1-loop
determinant of physical fluctuations around the thermal AdS
space.

The higher Rényi entropy Sn, n > 2 present new challenges
and criterion

What’s the CFT dual of quantum AdS3 gravity?E. Witten 1988, S.

Carlip 050302, A. Maloney and E. Witten 0712.0155
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Discussion

Our investigations in this work could be extended in several
directions.

First of all, it would be interesting to compute the Rényi
entropy of a concrete CFT model, considering the limited
knowledge on this issue

Secondly, it would be interesting to study the AdS3/CFT2

correspondence with other matter coupling. In particular, the
Rényi entropy may provide another window to check the
minimal model holography in M. Gaberdiel and R. Gupakumar 1207.6697.

Thirdly, it would be worthwhile to discuss the Rényi entropy in
the gravity with higher derivative corrections J. deBoer 1101.5781, L-Y.

Hung 1101.5813, BC and J-j. Zhang 1305.6767

It would be nice to generalize our study to the case with more
than two intervals

It is certainly important to generalize our prescriptions to
higher dimensions
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Thanks for your attention!
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	Entanglement entropy
	Replica trick
	Short interval expansion
	Quasiprimaries in vacuum module
	Application
	Conclusion

